Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 529-540.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate a new iterative implicit algorithm for fixed points of asymptotically nonexpansive mapping in Hilbert spaces. We also prove its strong convergence theorem under certain assumptions imposed on the parameters and extend some well-known results. As an application, we apply our main result to $\mu$-inverse strongly monotone mapping.
DOI : 10.22436/jnsa.011.04.09
Classification : 47H09, 47H10, 54H25
Keywords: Asymptotically nonexpansive, strong convergence, \(\mu\)-inverse strongly monotone mapping, Hilbert space

Wang, Yuanheng 1 ; Feng, Jialei  1

1 Department of Mathematics, Zhejiang Normal University, Jinhua, China
@article{JNSA_2018_11_4_a8,
     author = { Wang, Yuanheng and Feng, Jialei },
     title = {Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {529-540},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/}
}
TY  - JOUR
AU  -  Wang, Yuanheng
AU  - Feng, Jialei 
TI  - Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 529
EP  - 540
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/
DO  - 10.22436/jnsa.011.04.09
LA  - en
ID  - JNSA_2018_11_4_a8
ER  - 
%0 Journal Article
%A  Wang, Yuanheng
%A Feng, Jialei 
%T Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings
%J Journal of nonlinear sciences and its applications
%D 2018
%P 529-540
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/
%R 10.22436/jnsa.011.04.09
%G en
%F JNSA_2018_11_4_a8
 Wang, Yuanheng; Feng, Jialei . Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 529-540. doi : 10.22436/jnsa.011.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/

[1] Blum, E.; W. Oettli From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[2] Ceng, L.-C.; Wang, C.-Y.; Yao, J.-C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI

[3] Fan, Q.; Z. Yao Strong convergence theorems for a nonexpansive mapping and its applications for solving the split feasibility problem, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 1470-1477 | DOI

[4] Flåm, S. D.; A. S. Antipin Equilibrium programming using proximal-like algorithms, Math. Programming, Volume 78 (1996), pp. 29-41 | DOI | Zbl

[5] Kim, T.-H.; H.-K. Xu Strong convergence of modified Mann iterations , Nonlinear Anal., Volume 61 (2005), pp. 51-60 | DOI

[6] López, G.; Martín-Márquez, V.; Wang, F.; H.-K. Xu Forward-backword splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-25

[7] Lou, J.; Zhang, L.-J.; He, Z. Viscosity approximation methods for asymptotically nonexpansive mappings, Appl. Math. Comput., Volume 203 (2008), pp. 171-177 | DOI

[8] A. Moudafi Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI

[9] Nakajo, K.; W. Takahashi Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379 | DOI

[10] Peng, J.-W.; J.-C. Yao A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings , Nonlinear Anal., Volume 71 (2009), pp. 6001-6010 | Zbl | DOI

[11] Peng, J.-W.; Yao, J.-C. Strong convergence theorems of iterative scheme based on the extra gradient method for mixed equilibrium problems and fixed point problems, Math. Comput. Modelling, Volume 49 (2009), pp. 1816-1828 | DOI

[12] Qin, X.; Cho, Y. J.; Kang, S. M. Viscosity approximation methods for generalized equlibrium problems and fixed point problems with applications , Nonlinear Anal., Volume 72 (2010), pp. 99-112 | DOI

[13] Song, Y.; Chen, R.; H. Zhou Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal., Volume 66 (2007), pp. 1016-1024 | DOI

[14] Sunthrayuth, P.; Kumam, P. Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces , Math. Comput. Modelling, Volume 58 (2013), pp. 1814-1828 | DOI

[15] Y.-H.Wang; Y.-H. Xia Strong convergence for asymptotical pseudocontractions with the demiclosedness principle in banach spaces , Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-8 | DOI | Zbl

[16] H.-K. Xu Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI

[17] Xu, H.-K. An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI

[18] H.-K. Xu Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291 | DOI

[19] Xu, H.-K.; Aoghamdi, M. A.; N. Shahzad The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-12 | Zbl | DOI

[20] Yan, Q.; G. Cai Convergence analysis of modified viscosity implicit rules of asymptotically nonexpansive mappings in Hilbert spaces, Revista de la Real Academia de Ciencias Exactas, Fasicas y Naturales., Serie A. Matematicas (RACSAM), Volume 2017 (2017 ), pp. 1-16 | DOI

[21] Yao, Y.; Liou, Y.-C.; Chen, R. Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces, Nonlinear Anal., Volume 67 (2007), pp. 3311-3317 | DOI

[22] Yao, Y.; Liou, Y.-C.; S. M. Kang Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method , Comput. Math. Appl., Volume 59 (2010), pp. 3472-3480 | Zbl | DOI

[23] Yao, Y.; Noor, M. A.; Liou, Y.-C.; Kang, S. M. Some new algorithms for solving mixed equilibrium problems, Comput. Math. Appl., Volume 60 (2010), pp. 1351-1359 | DOI

[24] Yao, Y.; Shahzad, N.; Liou, Y.-C. Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI

Cité par Sources :