Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Yuanheng 1 ; Feng, Jialei  1
@article{JNSA_2018_11_4_a8, author = { Wang, Yuanheng and Feng, Jialei }, title = {Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {529-540}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, doi = {10.22436/jnsa.011.04.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/} }
TY - JOUR AU - Wang, Yuanheng AU - Feng, Jialei TI - Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 529 EP - 540 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/ DO - 10.22436/jnsa.011.04.09 LA - en ID - JNSA_2018_11_4_a8 ER -
%0 Journal Article %A Wang, Yuanheng %A Feng, Jialei %T Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings %J Journal of nonlinear sciences and its applications %D 2018 %P 529-540 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/ %R 10.22436/jnsa.011.04.09 %G en %F JNSA_2018_11_4_a8
Wang, Yuanheng; Feng, Jialei . Strong convergence of a new iterative algorithm for fixed points of asymptotically nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 529-540. doi : 10.22436/jnsa.011.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.09/
[1] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[2] Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI
[3] Strong convergence theorems for a nonexpansive mapping and its applications for solving the split feasibility problem, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 1470-1477 | DOI
[4] Equilibrium programming using proximal-like algorithms, Math. Programming, Volume 78 (1996), pp. 29-41 | DOI | Zbl
[5] Strong convergence of modified Mann iterations , Nonlinear Anal., Volume 61 (2005), pp. 51-60 | DOI
[6] Forward-backword splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-25
[7] Viscosity approximation methods for asymptotically nonexpansive mappings, Appl. Math. Comput., Volume 203 (2008), pp. 171-177 | DOI
[8] Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI
[9] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379 | DOI
[10] A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings , Nonlinear Anal., Volume 71 (2009), pp. 6001-6010 | Zbl | DOI
[11] Strong convergence theorems of iterative scheme based on the extra gradient method for mixed equilibrium problems and fixed point problems, Math. Comput. Modelling, Volume 49 (2009), pp. 1816-1828 | DOI
[12] Viscosity approximation methods for generalized equlibrium problems and fixed point problems with applications , Nonlinear Anal., Volume 72 (2010), pp. 99-112 | DOI
[13] Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal., Volume 66 (2007), pp. 1016-1024 | DOI
[14] Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces , Math. Comput. Modelling, Volume 58 (2013), pp. 1814-1828 | DOI
[15] Strong convergence for asymptotical pseudocontractions with the demiclosedness principle in banach spaces , Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-8 | DOI | Zbl
[16] Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI
[17] An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI
[18] Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291 | DOI
[19] The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-12 | Zbl | DOI
[20] Convergence analysis of modified viscosity implicit rules of asymptotically nonexpansive mappings in Hilbert spaces, Revista de la Real Academia de Ciencias Exactas, Fasicas y Naturales., Serie A. Matematicas (RACSAM), Volume 2017 (2017 ), pp. 1-16 | DOI
[21] Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces, Nonlinear Anal., Volume 67 (2007), pp. 3311-3317 | DOI
[22] Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method , Comput. Math. Appl., Volume 59 (2010), pp. 3472-3480 | Zbl | DOI
[23] Some new algorithms for solving mixed equilibrium problems, Comput. Math. Appl., Volume 60 (2010), pp. 1351-1359 | DOI
[24] Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI
Cité par Sources :