Viral dynamics of an HIV model with pulse antiretroviral therapy and adherence
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 516-528.

Voir la notice de l'article provenant de la source International Scientific Research Publications

An immunological model of HIV-1 infection that accounts for antiretroviral drug uptake via explicit compartments is considered. Different from traditional methods where the drug effects is modeled implicitly as a proportional inhibition of viral infection and production, in this paper, it is assumed that the CD4$^+$ T cells can 'prey on' the antiretroviral drugs and become the cells which cannot be infected or produce new virions. Drug dymamics is modeled applying impulsive differential equations. The basic reproductive number $R_0$ is defined via the next infection operator. It is shown that with perfect adherence the virus can be eradicated permanently if $R_0$ is less than unity, otherwise, the virus can persist by applying persistent theory. The effects of imperfect adherence are also explored. The results indicate that even for the same degree of adherence, different adherence patterns may lead to different therapy outcomes. In particular, for regular dosage missing, the more dosages are consecutively missed, the worse therapy outcomes will be.
DOI : 10.22436/jnsa.011.04.08
Classification : 34C60, 37C75, 92B05
Keywords: Impulsive therapy, imperfect adherence, basic reproductive number, adherence pattern

Yang, Youping  1

1 School of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, P. R. China
@article{JNSA_2018_11_4_a7,
     author = {Yang, Youping },
     title = {Viral dynamics of an {HIV} model with pulse antiretroviral therapy  and adherence},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {516-528},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.08/}
}
TY  - JOUR
AU  - Yang, Youping 
TI  - Viral dynamics of an HIV model with pulse antiretroviral therapy  and adherence
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 516
EP  - 528
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.08/
DO  - 10.22436/jnsa.011.04.08
LA  - en
ID  - JNSA_2018_11_4_a7
ER  - 
%0 Journal Article
%A Yang, Youping 
%T Viral dynamics of an HIV model with pulse antiretroviral therapy  and adherence
%J Journal of nonlinear sciences and its applications
%D 2018
%P 516-528
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.08/
%R 10.22436/jnsa.011.04.08
%G en
%F JNSA_2018_11_4_a7
Yang, Youping . Viral dynamics of an HIV model with pulse antiretroviral therapy  and adherence. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 516-528. doi : 10.22436/jnsa.011.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.08/

[1] Bacaër, N.; Guernaoui, S. The epidemic threshold of vector-borne diseases with seasonality, Morocco. J. Math. Biol., Volume 53 (2006), pp. 421-436 | DOI | Zbl

[2] Baĭnov, D.; Simeonov, P. Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993

[3] Bonhoeffer, S.; M. A. Nowak Pre-existence and emergence of drug resistance in HIV-1 infection, Proc. R. Soc. Lond. B, Volume 264 (1997), pp. 631-637 | DOI

[4] Ding, A. A.; Wu, H. Assessing antiviral potency of anti-HIV therapies in vivo by comparing viral decay rates in viral dynamic models , Biostatistics, Volume 2 (2001), pp. 13-29 | DOI

[5] Ferguson, N. M.; Donnelly, C. A.; Hooper, J.; Ghani, A. C.; Fraser, C.; Bartley, L. M.; Rode, R. A.; Vernazza, P.; Lapins, D.; Mayer, S. L.; Anderson, R. M. Adherence to antiretroviral therapy and its impact on clinical outcome in HIVinfected patients, J. R. Soc. Interface., Volume 2 (2005), pp. 349-363 | DOI

[6] Friedland, G. H.; Williams, A.; Attaining higher goals in HIV treatment: the central importance of adherence, AIDS, Volume 13 (1999), pp. 61-72

[7] Huang, Y.; Liu, D.; Wu, H. Hierarchical Bayesian methods for estimation of parameters in longitudinal HIV dynamic system, Biometrics, Volume 62 (2006), pp. 413-423 | DOI | Zbl

[8] Huang, Y.; Rosenkranz, S. L.; H. Wu Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity, Math. Biosci., Volume 184 (2003), pp. 165-186 | DOI | Zbl

[9] Krakovska, O.; L. M. Wahl Optimal drug treatment regimens for HIV depend on adherence, J. Theoret. Biol., Volume 246 (2007), pp. 499-509 | DOI

[10] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S. Theory of impulsive differential equations, World Scientific Publishing Co., Inc., Teaneck, New Jersey, 1989

[11] Liu, L.; Zhao, X.-Q.; Y. Zhou A Tuberculosis Model with Seasonality, Bull. Math. Biol., Volume 72 (2010), pp. 931-952 | DOI

[12] Lou, J.; R. J. Smith Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide, J. Theoret. Biol., Volume 268 (2011), pp. 1-13 | DOI

[13] J. M. McCune The dynamics of \(CD4^+\) T-cell depletion in HIV disease, Nature, Volume 410 (2001), pp. 974-979

[14] McLean, A. R.; M. A. Nowak Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV, AIDS, Volume 6 (1992), pp. 71-79

[15] Miron, R. E.; Smith, R. J. Modelling imperfect adherence to HIV induction therapy , BMC Infect. Dis., Volume 2010 (2010), pp. 1-16 | DOI

[16] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; R. M. May Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., Volume 184 (1997), pp. 203-217 | DOI

[17] Perelson, A. S.; P. W. Nelson Mathematical analysis of HIV-1 dynamics in vivo , SIAM Rev., Volume 41 (1999), pp. 3-44 | DOI

[18] Philips, A. N.; Youlem, M.; Johnson, M.; Loveday, C. Use of stochastic model to develop understanding of the impact of different patterns of antiretroviral drug use on resistance development , AIDS, Volume 15 (2001), pp. 2211-2220

[19] Rong, L.; Feng, Z.; A. S. Perelson Emergence of HIV-1 Drug Resistance During Antiretroviral Treatment , Bull. Math. Biol., Volume 69 (2007), pp. 2027-2060 | DOI | Zbl

[20] H. L. Smith Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems , Mathematical Surveys and Monographs , American Mathematical Society, Providence, 1995 | DOI

[21] Smith, R. J. Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges, Proc. R. Soc. B., Volume 273 (2006), pp. 617-624 | DOI

[22] Smith, R. J. Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts long-term failure of protease-only therapy , J. Theoret. Biol., Volume 251 (2008), pp. 227-237 | DOI

[23] Smith, R. J.; L. M. Wahl Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., Volume 66 (2004), pp. 1259-1283 | DOI | Zbl

[24] Smith, R. J.; Wahl, L. M. Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., Volume 67 (2005), pp. 783-813 | Zbl | DOI

[25] Tchetgen, E.; Kaplan, E. H.; Friedland, G. H.; Public health consequences of screening patients for adherence to highly active antiretroviral therapy, JAIDS, Volume 26 (2001), pp. 119-129

[26] Driessche, P. Van den; J.Watmough Reproductive numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., Volume 180 (2002), pp. 29-48 | DOI

[27] Wahl, L. M.; Nowak, M. A. Adherence and drug resistance: predictions for therapy outcome, Proc. R. Soc. London B., Volume 267 (2000), pp. 835-843 | DOI

[28] Wang, W.; Zhao, X.-Q. Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, Volume 20 (2008), pp. 699-717 | Zbl | DOI

[29] Xiao, Y. A semi-stochastic model for HIV population Dynamics, Int. J. Biomath., Volume 2 (2009), pp. 391-404 | Zbl | DOI

[30] Yang, Y.; Y. Xiao Threshold dynamics for an HIV model in periodic environments, J. Math. Anal. Appl., Volume 361 (2010), pp. 59-68 | DOI | Zbl

[31] Yang, Y.; Xiao, Y. The effects of population dispersal and pulse vaccination on disease control, Math. Comput. Modelling, Volume 52 (2010), pp. 1591-1604 | Zbl | DOI

[32] Zhang, F.; Zhao, X.-Q. A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., Volume 325 (2007), pp. 496-516 | DOI

[33] Zhao, X.-Q. Dynamical Systems in Population Biology , Springer-Verlag, New York, 2003 | DOI

Cité par Sources :