Fourier series of finite product of Bernoulli and ordered Bell functions
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 500-515.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider three types of functions given by products of Bernoulli and ordered Bell functions and derive their Fourier series expansions. In addition, we will express each of them in terms of Bernoulli functions.
DOI : 10.22436/jnsa.011.04.07
Classification : 11B83, 42A16
Keywords: Fourier series, Bernoulli functions, ordered Bell functions

Kim, Taekyun  1 ; Kim, Dae San  2 ; Dolgy, Dmitry V.  3 ; Kwon, Jongkyum  4

1 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China;Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea
2 Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea
3 Hanrimwon, Kwangwoon University, Seoul, 139-701, Republic of Korea
4 Department of Mathematics Education and ERI, Gyeongsang National University, Jinju, Gyeongsangnamdo, 52828, Republic of Korea
@article{JNSA_2018_11_4_a6,
     author = {Kim, Taekyun  and Kim, Dae San  and Dolgy, Dmitry V.  and Kwon, Jongkyum },
     title = {Fourier series of finite product of {Bernoulli} and ordered {Bell} functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {500-515},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/}
}
TY  - JOUR
AU  - Kim, Taekyun 
AU  - Kim, Dae San 
AU  - Dolgy, Dmitry V. 
AU  - Kwon, Jongkyum 
TI  - Fourier series of finite product of Bernoulli and ordered Bell functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 500
EP  - 515
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/
DO  - 10.22436/jnsa.011.04.07
LA  - en
ID  - JNSA_2018_11_4_a6
ER  - 
%0 Journal Article
%A Kim, Taekyun 
%A Kim, Dae San 
%A Dolgy, Dmitry V. 
%A Kwon, Jongkyum 
%T Fourier series of finite product of Bernoulli and ordered Bell functions
%J Journal of nonlinear sciences and its applications
%D 2018
%P 500-515
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/
%R 10.22436/jnsa.011.04.07
%G en
%F JNSA_2018_11_4_a6
Kim, Taekyun ; Kim, Dae San ; Dolgy, Dmitry V. ; Kwon, Jongkyum . Fourier series of finite product of Bernoulli and ordered Bell functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 500-515. doi : 10.22436/jnsa.011.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/

[1] Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions with formulas, graphs, and mathematical tables , National Bureau of Standards Applied Mathematics Series, Government Printing Office, Washington, D.C., 1964

[2] Agarwal, R. P.; Kim, D. S.; Kim, T.; J. Kwon Sums of finite products of Bernoulli functions, Adv. Difference Equ., Volume 2017 (2017), pp. 1-15 | DOI

[3] Dolgy, D. V.; Kim, D. S.; Kim, T.; Mansour, T. Sums of finite products of ordered Bell functions (preprint)

[4] Dunne, G. V.; C. Schubert Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys., Volume 7 (2013), pp. 225-249 | DOI | Zbl

[5] Faber, C.; Pandharipande, R. Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI

[6] Gaboury, S.; Tremblay, R.; Fugére, B.-J. Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc., Volume 17 (2014), pp. 115-123 | Zbl

[7] Jang, G.-W.; Kim, T.; Kim, D. S.; Mansour, T. Fourier series of functions related to Bernoulli polynomials, Adv. Stud. Contemp. Math., Volume 27 (2017), pp. 49-62 | Zbl | DOI

[8] Kim, T. Some identities for the Bernoulli, the Euler and Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., Volume 20 (2010), pp. 23-28

[9] Kim, D. S.; T. Kim Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., Volume 2012 (2012), pp. 1-12

[10] Kim, D. S.; Kim, T. A note on higher-order Bernoulli polynomials, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI

[11] Kim, D. S.; Kim, T.; Identities arising from higher-order Daehee polynomial bases, Open Math., Volume 13 (2015), pp. 196-208 | Zbl | DOI

[12] Kim, T.; Kim, D. S.; Dolgy, D. V.; J.-W. Park Fourier series of sums of products of ordered Bell and poly-Bernoulli functions, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-17 | DOI | Zbl

[13] Kim, T.; Kim, D. S.; Jang, G.-W.; J. Kwon Fourier series of sums of products of Genocchi functions and their applications, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 1683-1694 | DOI

[14] Kim, T.; Kim, D. S.; Rim, S.-H.; D. Dolgy Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-8 | DOI

[15] Liu, H.; Wang, W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math., Volume 309 (2009), pp. 3346-3363 | DOI | Zbl

[16] Marsden, J. E. Elementary classical analysis , W. H. Freeman and Company, San Francisco, 1974

[17] Miki, H. A relation between Bernoulli numbers, J. Number Theory, Volume 10 (1978), pp. 297-302 | DOI

[18] Srivastava, H. M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444

Cité par Sources :