Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Taekyun  1 ; Kim, Dae San  2 ; Dolgy, Dmitry V.  3 ; Kwon, Jongkyum  4
@article{JNSA_2018_11_4_a6, author = {Kim, Taekyun and Kim, Dae San and Dolgy, Dmitry V. and Kwon, Jongkyum }, title = {Fourier series of finite product of {Bernoulli} and ordered {Bell} functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {500-515}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, doi = {10.22436/jnsa.011.04.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/} }
TY - JOUR AU - Kim, Taekyun AU - Kim, Dae San AU - Dolgy, Dmitry V. AU - Kwon, Jongkyum TI - Fourier series of finite product of Bernoulli and ordered Bell functions JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 500 EP - 515 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/ DO - 10.22436/jnsa.011.04.07 LA - en ID - JNSA_2018_11_4_a6 ER -
%0 Journal Article %A Kim, Taekyun %A Kim, Dae San %A Dolgy, Dmitry V. %A Kwon, Jongkyum %T Fourier series of finite product of Bernoulli and ordered Bell functions %J Journal of nonlinear sciences and its applications %D 2018 %P 500-515 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/ %R 10.22436/jnsa.011.04.07 %G en %F JNSA_2018_11_4_a6
Kim, Taekyun ; Kim, Dae San ; Dolgy, Dmitry V. ; Kwon, Jongkyum . Fourier series of finite product of Bernoulli and ordered Bell functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 500-515. doi : 10.22436/jnsa.011.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.07/
[1] Handbook of Mathematical Functions with formulas, graphs, and mathematical tables , National Bureau of Standards Applied Mathematics Series, Government Printing Office, Washington, D.C., 1964
[2] Sums of finite products of Bernoulli functions, Adv. Difference Equ., Volume 2017 (2017), pp. 1-15 | DOI
[3] Sums of finite products of ordered Bell functions (preprint)
[4] Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys., Volume 7 (2013), pp. 225-249 | DOI | Zbl
[5] Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI
[6] Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc., Volume 17 (2014), pp. 115-123 | Zbl
[7] Fourier series of functions related to Bernoulli polynomials, Adv. Stud. Contemp. Math., Volume 27 (2017), pp. 49-62 | Zbl | DOI
[8] Some identities for the Bernoulli, the Euler and Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., Volume 20 (2010), pp. 23-28
[9] Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., Volume 2012 (2012), pp. 1-12
[10] A note on higher-order Bernoulli polynomials, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI
[11] Identities arising from higher-order Daehee polynomial bases, Open Math., Volume 13 (2015), pp. 196-208 | Zbl | DOI
[12] Fourier series of sums of products of ordered Bell and poly-Bernoulli functions, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-17 | DOI | Zbl
[13] Fourier series of sums of products of Genocchi functions and their applications, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 1683-1694 | DOI
[14] Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-8 | DOI
[15] Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math., Volume 309 (2009), pp. 3346-3363 | DOI | Zbl
[16] Elementary classical analysis , W. H. Freeman and Company, San Francisco, 1974
[17] A relation between Bernoulli numbers, J. Number Theory, Volume 10 (1978), pp. 297-302 | DOI
[18] Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444
Cité par Sources :