Voir la notice de l'article provenant de la source International Scientific Research Publications
Hussain, Saqib  1 ; Khan, Shahid  2 ; Zaighum, Muhammad Asad  2 ; Darus, Maslina  3
@article{JNSA_2018_11_4_a5, author = {Hussain, Saqib and Khan, Shahid and Zaighum, Muhammad Asad and Darus, Maslina }, title = {On certain classes of bi-univalent functions related to \(m\)-fold symmetry}, journal = {Journal of nonlinear sciences and its applications}, pages = {490-499}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, doi = {10.22436/jnsa.011.04.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/} }
TY - JOUR AU - Hussain, Saqib AU - Khan, Shahid AU - Zaighum, Muhammad Asad AU - Darus, Maslina TI - On certain classes of bi-univalent functions related to \(m\)-fold symmetry JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 490 EP - 499 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/ DO - 10.22436/jnsa.011.04.06 LA - en ID - JNSA_2018_11_4_a5 ER -
%0 Journal Article %A Hussain, Saqib %A Khan, Shahid %A Zaighum, Muhammad Asad %A Darus, Maslina %T On certain classes of bi-univalent functions related to \(m\)-fold symmetry %J Journal of nonlinear sciences and its applications %D 2018 %P 490-499 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/ %R 10.22436/jnsa.011.04.06 %G en %F JNSA_2018_11_4_a5
Hussain, Saqib ; Khan, Shahid ; Zaighum, Muhammad Asad ; Darus, Maslina . On certain classes of bi-univalent functions related to \(m\)-fold symmetry. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 490-499. doi : 10.22436/jnsa.011.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/
[1] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012), pp. 344-351 | DOI
[2] Coefficient bounds for certain subclasses of m-fold symmetric bi-univalentf Functions, J. Math., Volume 2015 (2015 ), pp. 1-5
[3] New subclasses of bi-univalent functions involving Dziok-Srivastava operator, ISRN Math. Anal., Volume 2013 (2013 ), pp. 1-5
[4] Aspects of Contemporary Complex Analysis, Academic Press, New York, 1980
[5] On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math., Volume 31 (1986), pp. 70-77
[6] Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator , Sci. World J., Volume 2013 (2013 ), pp. 1-6
[7] Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator, J. Funct. Spaces Appl., Volume 2013 (2013 ), pp. 1-7
[8] Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013), pp. 59-65
[9] Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions , Turk. J. Math., Volume 40 (2016), pp. 1386-1397 | DOI
[10] Coefficient estimates for a new subclass of analytic and bi-univalent functions , An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 62 (2016), pp. 305-311 | Zbl
[11] Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013), pp. 1165-1171 | DOI
[12] Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013), pp. 49-60
[13] Second Hankel determinant for bi-starlike and bi-convex functions of order \(\beta\),, Appl. Math. Comput., Volume 271 (2015), pp. 301-307 | DOI
[14] Univalent Functions , Springer-Verlag , New York, 1983
[15] New subclasses of bi-univalent functions , Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573 | DOI
[16] Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., Volume 20 (2012), pp. 179-182 | Zbl | DOI
[17] Unpredictably of the coefficients of m-fold symmetric bi-Starlike functions, Inter. J. Math., Volume 2014 (2014 ), pp. 1-8 | DOI
[18] Coefficient bounds for bi-univalent functions, PanAmer. Math. J., Volume 22 (2012), pp. 15-26
[19] Coefficient of symmetric functions of bounded boundary rotations , Proc. Amer. Math. Soc., Volume 105 (1989), pp. 324-329 | DOI | Zbl
[20] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 | DOI
[21] Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., Volume 2013 (2013 ), pp. 1-3
[22] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(|z|<1\),, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112 | DOI | Zbl
[23] Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975
[24] On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., Volume 21 (2013), pp. 190-193 | DOI
[25] Coefficient estimates for a general subclass of analytic and bi- univalent functions, Filomat, Volume 27 (2013), pp. 831-842 | DOI
[26] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192 | DOI
[27] Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., Volume 7 (2014), pp. 1-10 | DOI | Zbl
[28] Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., Volume 40 (2016), pp. 641-646 | DOI
[29] Topics in univalent function theory , Ph.D. thesis, University of London, UK, 1981
[30] Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012), pp. 990-994 | DOI
[31] A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012), pp. 11461-11465 | Zbl | DOI
Cité par Sources :