On certain classes of bi-univalent functions related to $m$-fold symmetry
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 490-499.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In our present investigation, we introduce two new subclasses $S_{\Sigma _{m}}(\alpha ,\lambda ,\mu )$ and $S_{\Sigma _{m}}(\beta ,\lambda ,\mu )$ of analytic and $m$-fold symmetric bi-univalent functions in the open unit disk $E$. Results concerning coefficient estimates for the functions of these classes are derived. Many interesting new and already existing corollaries are also presented.
DOI : 10.22436/jnsa.011.04.06
Classification : 30C45, 30C50
Keywords: \(m\)-Fold symmetry, bi-univalent functions, coefficient estimates

Hussain, Saqib  1 ; Khan, Shahid  2 ; Zaighum, Muhammad Asad  2 ; Darus, Maslina  3

1 COMSATS Institute of Information Technology, Abbotabad, Pakistan
2 Department of Mathematics, Riphah International University Islamabad, Pakistan
3 School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600, Bangi, Selangor, Malaysia
@article{JNSA_2018_11_4_a5,
     author = {Hussain, Saqib  and Khan, Shahid  and Zaighum, Muhammad Asad  and Darus, Maslina },
     title = {On certain classes of bi-univalent functions related to \(m\)-fold symmetry},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {490-499},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/}
}
TY  - JOUR
AU  - Hussain, Saqib 
AU  - Khan, Shahid 
AU  - Zaighum, Muhammad Asad 
AU  - Darus, Maslina 
TI  - On certain classes of bi-univalent functions related to \(m\)-fold symmetry
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 490
EP  - 499
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/
DO  - 10.22436/jnsa.011.04.06
LA  - en
ID  - JNSA_2018_11_4_a5
ER  - 
%0 Journal Article
%A Hussain, Saqib 
%A Khan, Shahid 
%A Zaighum, Muhammad Asad 
%A Darus, Maslina 
%T On certain classes of bi-univalent functions related to \(m\)-fold symmetry
%J Journal of nonlinear sciences and its applications
%D 2018
%P 490-499
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/
%R 10.22436/jnsa.011.04.06
%G en
%F JNSA_2018_11_4_a5
Hussain, Saqib ; Khan, Shahid ; Zaighum, Muhammad Asad ; Darus, Maslina . On certain classes of bi-univalent functions related to \(m\)-fold symmetry. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 490-499. doi : 10.22436/jnsa.011.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.06/

[1] Ali, R. M.; Lee, S. K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012), pp. 344-351 | DOI

[2] Altinkaya, Ş.; S. Yalçin Coefficient bounds for certain subclasses of m-fold symmetric bi-univalentf Functions, J. Math., Volume 2015 (2015 ), pp. 1-5

[3] Aouf, M. K.; El-Ashwah, R. M.; Abd-Eltawab, A. M. New subclasses of bi-univalent functions involving Dziok-Srivastava operator, ISRN Math. Anal., Volume 2013 (2013 ), pp. 1-5

[4] Brannan, D. A.; Clunie, J. G. Aspects of Contemporary Complex Analysis, Academic Press, New York, 1980

[5] Brannan, D. A.; T. S. Taha On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math., Volume 31 (1986), pp. 70-77

[6] S. Bulut Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator , Sci. World J., Volume 2013 (2013 ), pp. 1-6

[7] Bulut, S. Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator, J. Funct. Spaces Appl., Volume 2013 (2013 ), pp. 1-7

[8] Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013), pp. 59-65

[9] S. Bulut Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions , Turk. J. Math., Volume 40 (2016), pp. 1386-1397 | DOI

[10] S. Bulut Coefficient estimates for a new subclass of analytic and bi-univalent functions , An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 62 (2016), pp. 305-311 | Zbl

[11] Çağlar, M.; Orhan, H.; N. Yağmur Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013), pp. 1165-1171 | DOI

[12] E. Deniz Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013), pp. 49-60

[13] Deniz, E.; Çağlar, M.; H. Orhan Second Hankel determinant for bi-starlike and bi-convex functions of order \(\beta\),, Appl. Math. Comput., Volume 271 (2015), pp. 301-307 | DOI

[14] P. L. Duren Univalent Functions , Springer-Verlag , New York, 1983

[15] Frasin, B. A.; Aouf, M. K. New subclasses of bi-univalent functions , Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573 | DOI

[16] Goyal, S. P.; Goswami, P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., Volume 20 (2012), pp. 179-182 | Zbl | DOI

[17] Hamidi, S. G.; Jahangiri, J. M. Unpredictably of the coefficients of m-fold symmetric bi-Starlike functions, Inter. J. Math., Volume 2014 (2014 ), pp. 1-8 | DOI

[18] Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions, PanAmer. Math. J., Volume 22 (2012), pp. 15-26

[19] Koepf, W. Coefficient of symmetric functions of bounded boundary rotations , Proc. Amer. Math. Soc., Volume 105 (1989), pp. 324-329 | DOI | Zbl

[20] Lewin, M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 | DOI

[21] Murugusundaramoorthy, G.; Magesh, N.; V. Prameela Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., Volume 2013 (2013 ), pp. 1-3

[22] E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(|z|<1\),, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112 | DOI | Zbl

[23] C. Pommerenke Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975

[24] Porwal, S.; Darus, M. On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., Volume 21 (2013), pp. 190-193 | DOI

[25] Srivastava, H. M.; Bulut, S.; Çağlar, M.; Yağmur, N. Coefficient estimates for a general subclass of analytic and bi- univalent functions, Filomat, Volume 27 (2013), pp. 831-842 | DOI

[26] Srivastava, H. M.; Mishra, A. K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192 | DOI

[27] Srivastava, H. M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., Volume 7 (2014), pp. 1-10 | DOI | Zbl

[28] Eker, S. Sümer Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., Volume 40 (2016), pp. 641-646 | DOI

[29] Taha, T. S. Topics in univalent function theory , Ph.D. thesis, University of London, UK, 1981

[30] Xu, Q.-H.; Gui, Y.-C.; Srivastava, H. M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012), pp. 990-994 | DOI

[31] Xu, Q.-H.; Xiao, H.-G.; H. M. Srivastava A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012), pp. 11461-11465 | Zbl | DOI

Cité par Sources :