Voir la notice de l'article provenant de la source International Scientific Research Publications
Caristi, G.  1 ; Pettineo, M.  2 ; Puglisi, A. 1
@article{JNSA_2018_11_4_a4, author = {Caristi, G. and Pettineo, M. and Puglisi, A.}, title = {Hitting probabilities for non-convex lattice}, journal = {Journal of nonlinear sciences and its applications}, pages = {486-489}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2018}, doi = {10.22436/jnsa.011.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/} }
TY - JOUR AU - Caristi, G. AU - Pettineo, M. AU - Puglisi, A. TI - Hitting probabilities for non-convex lattice JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 486 EP - 489 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/ DO - 10.22436/jnsa.011.04.05 LA - en ID - JNSA_2018_11_4_a4 ER -
%0 Journal Article %A Caristi, G. %A Pettineo, M. %A Puglisi, A. %T Hitting probabilities for non-convex lattice %J Journal of nonlinear sciences and its applications %D 2018 %P 486-489 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/ %R 10.22436/jnsa.011.04.05 %G en %F JNSA_2018_11_4_a4
Caristi, G. ; Pettineo, M. ; Puglisi, A. Hitting probabilities for non-convex lattice. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 486-489. doi : 10.22436/jnsa.011.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/
[1] A Laplace type problem for two hexagonal lattices of Delone with obstacles, Appl. Math. Sci., Volume 7 (2013), pp. 4571-4581
[2] A Laplace type problem for lattice with cell composed by two quadrilaterals and one triangle, Appl. Math. Sci., Volume 8 (2014), pp. 789-804
[3] Laplace Type Problems for a Triangular Lattice and Different Body Test, Appl. Math. Sci., Volume 8 (2014), pp. 5123-5131
[4] A Laplace type for an regular lattices with convex-concave cell and obstacles rhombus, Appl. Math. Sci.
[5] Laplace problems for regular lattices with three different types of obstacles, Appl. Math. Sci., Volume 5 (2011), pp. 2765-2773
[6] A Laplace type problem for a regular lattice of Dirichlet-Voronoi with different obstacles, Appl. Math. Sci., Volume 5 (2011), pp. 1493-1523
[7] A laplace type problem for lattice with axial symmetric and different obstacles type (I), Far East J. Math. Sci., Volume 58 (2011), pp. 99-118 | Zbl
[8] A Laplace type problem for lattice with axial symmetry and different type of obstacles (II), Far East J. Math. Sci. (FJMS), Volume 64 (2012), pp. 281-295 | Zbl
[9] Problems of , Rend. Circ. Mat. Palermo (2) Suppl., Volume 70 (2002), pp. 237-256 | Zbl
[10] Calcul des probabilités, Les Grands Classiques Gauthier-Villars, Paris, 1912
[11] Probabilités géométriques de type , Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., Volume 110 (1976), pp. 53-59
Cité par Sources :