Hitting probabilities for non-convex lattice
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 486-489.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider three lattices with cells represented in Figures 1, 3, and 5 and we determine the probability that a random segment of constant length intersects a side of the lattice considered.
DOI : 10.22436/jnsa.011.04.05
Classification : 60D05, 52A22
Keywords: Geometric probability, stochastic geometry, random sets, random convex sets and integral geometry

Caristi, G.  1 ; Pettineo, M.  2 ; Puglisi, A. 1

1 Department of Economics, University of Messina, via dei Verdi, 75 98122, Messina, Italy
2 Department of Mathematics, University of Palermo, via Archirafi, 34-Palermo, Italy
@article{JNSA_2018_11_4_a4,
     author = {Caristi, G.  and Pettineo, M.  and Puglisi, A.},
     title = {Hitting probabilities for non-convex lattice},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {486-489},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     doi = {10.22436/jnsa.011.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/}
}
TY  - JOUR
AU  - Caristi, G. 
AU  - Pettineo, M. 
AU  - Puglisi, A.
TI  - Hitting probabilities for non-convex lattice
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 486
EP  - 489
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/
DO  - 10.22436/jnsa.011.04.05
LA  - en
ID  - JNSA_2018_11_4_a4
ER  - 
%0 Journal Article
%A Caristi, G. 
%A Pettineo, M. 
%A Puglisi, A.
%T Hitting probabilities for non-convex lattice
%J Journal of nonlinear sciences and its applications
%D 2018
%P 486-489
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/
%R 10.22436/jnsa.011.04.05
%G en
%F JNSA_2018_11_4_a4
Caristi, G. ; Pettineo, M. ; Puglisi, A. Hitting probabilities for non-convex lattice. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 486-489. doi : 10.22436/jnsa.011.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.05/

[1] Barilla, D.; Caristi, G.; Puglisi, A.; Stoka, M. A Laplace type problem for two hexagonal lattices of Delone with obstacles, Appl. Math. Sci., Volume 7 (2013), pp. 4571-4581

[2] Barilla, D.; Caristi, G.; Saitta, E.; Stoka, M. A Laplace type problem for lattice with cell composed by two quadrilaterals and one triangle, Appl. Math. Sci., Volume 8 (2014), pp. 789-804

[3] Barilla, D.; Caristi, G.; Puglisi, A.; Stoka, M. Laplace Type Problems for a Triangular Lattice and Different Body Test, Appl. Math. Sci., Volume 8 (2014), pp. 5123-5131

[4] Caristi, G.; Puglisi, A.; Saitta, E. A Laplace type for an regular lattices with convex-concave cell and obstacles rhombus, Appl. Math. Sci.

[5] Caristi, G.; Sorte, E. L.; Stoka, M. Laplace problems for regular lattices with three different types of obstacles, Appl. Math. Sci., Volume 5 (2011), pp. 2765-2773

[6] Caristi, G.; Stoka, M. A Laplace type problem for a regular lattice of Dirichlet-Voronoi with different obstacles, Appl. Math. Sci., Volume 5 (2011), pp. 1493-1523

[7] Caristi, G.; Stoka, M. A laplace type problem for lattice with axial symmetric and different obstacles type (I), Far East J. Math. Sci., Volume 58 (2011), pp. 99-118 | Zbl

[8] Caristi, G.; Stoka, M. A Laplace type problem for lattice with axial symmetry and different type of obstacles (II), Far East J. Math. Sci. (FJMS), Volume 64 (2012), pp. 281-295 | Zbl

[9] Duma, A.; Stoka, M. Problems of , Rend. Circ. Mat. Palermo (2) Suppl., Volume 70 (2002), pp. 237-256 | Zbl

[10] Poincaré, H. Calcul des probabilités, Les Grands Classiques Gauthier-Villars, Paris, 1912

[11] Stoka, M. Probabilités géométriques de type , Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., Volume 110 (1976), pp. 53-59

Cité par Sources :