Voir la notice de l'article provenant de la source International Scientific Research Publications
Yang, Dan  1 ; Dan, Wei  2 ; Fu, Yu  3
@article{JNSA_2018_11_3_a11, author = {Yang, Dan and Dan, Wei and Fu, Yu }, title = {A classification of minimal translation surfaces in {Minkowski} space}, journal = {Journal of nonlinear sciences and its applications}, pages = {437-443}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, doi = {10.22436/jnsa.011.03.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.12/} }
TY - JOUR AU - Yang, Dan AU - Dan, Wei AU - Fu, Yu TI - A classification of minimal translation surfaces in Minkowski space JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 437 EP - 443 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.12/ DO - 10.22436/jnsa.011.03.12 LA - en ID - JNSA_2018_11_3_a11 ER -
%0 Journal Article %A Yang, Dan %A Dan, Wei %A Fu, Yu %T A classification of minimal translation surfaces in Minkowski space %J Journal of nonlinear sciences and its applications %D 2018 %P 437-443 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.12/ %R 10.22436/jnsa.011.03.12 %G en %F JNSA_2018_11_3_a11
Yang, Dan ; Dan, Wei ; Fu, Yu . A classification of minimal translation surfaces in Minkowski space. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 437-443. doi : 10.22436/jnsa.011.03.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.12/
[1] Translation surfaces of linear Weingarten type, arXive, Volume 2014 (2014), pp. 1-7
[2] Geometry of Submanifolds, Marcel Dekker, New York, 1973 | Zbl
[3] Pseudo-Riemannian Geometry, \(\delta\) -invariants and Applications, With a foreword by Leopold Verstraelen, World Scientific Publishing Co., Hackensack, 2011 | Zbl
[4] A generalization of the translation surfaces of Scherk, Diff. Geom. in honor of Radu Rosca (KUL) (1991), pp. 107-109 | Zbl
[5] Surfaces in three-dimensional Euclidean and Minkowski space, in particular a study of Weingarten surfaces, PhD Thesis, Katholieke Univ. Leuven, Leuven, 2010
[6] Translation hypersurfaces with constant scalar curvature into the Euclidean space, Israel J. Math., Volume 201 (2014), pp. 797-811 | DOI | Zbl
[7] Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom., Volume 64 (1999), pp. 141-149 | DOI | Zbl
[8] On weak solutions in elasticity of dipolar bodies with voids, J. Comp. Appl. Math., Volume 82 (1997), pp. 291-297 | Zbl | DOI
[9] Harmonic vibrations in thermoelasticity of microstretch materials, J. Vib. Acoust. ASME, 2010 (2010), 6 pages, Volume 2010 (2010), pp. 1-6 | DOI
[10] Polynomial Translation Weingarten Surfaces in 3-dimensional Euclidean space, Differential geometry, 316–320, World Sci. Publ., Hackensack, NJ, 2009 | Zbl | DOI
[11] Translation hypersurfaces with constant curvature in space forms, Osaka J. Math., Volume 50 (2013), pp. 631-641 | Zbl
[12] Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., Volume 75 (2013), pp. 121-132 | Zbl
[13] The minimal translation surfaces in Euclidean space, Soochow J. Math., Volume 20 (1994), pp. 77-82 | Zbl
Cité par Sources :