The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 428-436.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study some results about the expression of solutions to some linear differential equations for the Caputo-Fabrizio fractional derivative. Furthermore, by the Banach contraction principle, the unique existence of the solution to an initial value problem for nonlinear differential equation involving the Caputo-Fabrizio fractional derivative is obtained.
DOI : 10.22436/jnsa.011.03.11
Classification : 26A33, 34B15
Keywords: The Caputo-Fabrizio fractional derivative, initial value problem, fractional differential equations, Banach contraction principle, uniqueness

Zhang, Shuqin  1 ; Hu, Lei  2 ; Sun, Sujing  3

1 School of Science,, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China
2 School of Science, Shandong Jiaotong University, Jinan 250357, Shandong, P. R. China
3 College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, P. R. China
@article{JNSA_2018_11_3_a10,
     author = {Zhang, Shuqin  and Hu, Lei  and Sun, Sujing },
     title = {The uniqueness of solution for initial value problems for fractional differential equation involving the {Caputo-Fabrizio} derivative},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {428-436},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.11/}
}
TY  - JOUR
AU  - Zhang, Shuqin 
AU  - Hu, Lei 
AU  - Sun, Sujing 
TI  - The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 428
EP  - 436
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.11/
DO  - 10.22436/jnsa.011.03.11
LA  - en
ID  - JNSA_2018_11_3_a10
ER  - 
%0 Journal Article
%A Zhang, Shuqin 
%A Hu, Lei 
%A Sun, Sujing 
%T The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative
%J Journal of nonlinear sciences and its applications
%D 2018
%P 428-436
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.11/
%R 10.22436/jnsa.011.03.11
%G en
%F JNSA_2018_11_3_a10
Zhang, Shuqin ; Hu, Lei ; Sun, Sujing . The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 428-436. doi : 10.22436/jnsa.011.03.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.11/

[1] Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., Volume 80 (2017), pp. 11-27 | DOI

[2] Abdulhameed, M.; Vieru, D.; Roslan, R. Modeling electro-magneto-hydrodynamic thermo-fluidic transpot of biofluids with new trend of fractional derivative without singular kernel, Phys. A, Volume 484 (2017), pp. 233-252 | DOI

[3] Al-Salti, N.; Karimov, E.; Sadarangani, K. On a differential Equation with Caputo-Fabrizio fractional derivative of order 1 < \beta\leq 2 and applications to Mass-Spring-Damper system, Progr. Fract. Differ. Appl., Volume 2 (2016), pp. 257-263

[4] Atangana, A. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput., Volume 273 (2016), pp. 948-956 | DOI

[5] Aydogan, S.; Baleanu, D.; Mousalou, A.; Rezapour, S. On approximate solutions for two higher-order Caputo-Fabrizio fractional integro-differential equtions, Adv. Difference Equ., Volume 2017 (2017), pp. 1-11 | DOI

[6] Bagley, R. L.; Torvik, P. J. On the fractional calculus model of viscoelastic behavior, J. Rheol., Volume 30 (1986), pp. 133-155 | DOI

[7] Bai, Z.; Dong, X.; Yin, C. Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Bound. Value Probl., Volume 2016 (2016), pp. 1-11 | DOI | Zbl

[8] Bai, Z.; Qiu, T. Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., Volume 215 (2009), pp. 2761-2767 | DOI

[9] Bai, Z.; Zhang, Y. The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl., Volume 60 (2010), pp. 2364-2372 | DOI

[10] Bai, Z.; Zhang, S.; Sun, S.; Yin, C. Monotone iterative method for a class of fractional differential equations, Electron. J. Differential Equations, Volume 2016 (2016), pp. 1-8

[11] Baleanu, D.; Mousalou, A.; Rezapour, S. On the existence of solutions for some infinite coefficient-symmetric Caputo- Fabrizio fractional integro-differential equations, Bound. Value Probl., Volume 2017 (2017), pp. 1-9 | DOI | Zbl

[12] Baleanu, D.; Mousalou, A.; Rezapour, S. A new method for investigationg approximate solutions of some fractional integrodifferential equations involving the Caputo-Fabrizio derivative, Adv. Difference Equ., Volume 2017 (2017), pp. 1-12 | DOI

[13] Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillationg vertical plate via Caputo-Fabrizio tiem fractional derivatives, Eur. Phys. J. plus, Volume 2017 (2017), pp. 1-16 | DOI

[14] Caputo, M.; Fabrizio, M. A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., Volume 1 (2015), pp. 73-85

[15] Caputo, M.; Fabrizio, M. Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels, Progr. Fract. Differ. Appl., Volume 2 (2016), pp. 1-11

[16] Cui, Y. Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., Volume 51 (2016), pp. 48-54 | DOI

[17] GÓmez-Aguilar, J. F. Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel, Phys. A, Volume 465 (2017), pp. 562-572 | DOI

[18] Hilfer, R. Applications of Fractional calculus in Physics, World Scientific, Singapore, 2000 | DOI

[19] Kilbas, A. A.; Srivastava, H. M.; J. J. Trujillo Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006

[20] Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., Volume 74 (2011), pp. 5975-5986 | DOI | Zbl

[21] Kumar, D.; Singh, J.; Qurashi, M. Al; Baleanu, D. Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mech. Eng., Volume 2017 (2017), pp. 1-8 | DOI

[22] Losada, J.; Nieto, J. J. Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., Volume 1 (2015), pp. 87-92

[23] Mirza, I. A.; Vieru, D. Fundamental solutions to advection-diffusion equation with time-fractional Caputo-Fabrizio derivative, Comput. Math. Appl., Volume 73 (2017), pp. 1-10 | Zbl | DOI

[24] Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., Volume 316 (2018), pp. 504-515 | DOI

Cité par Sources :