Voir la notice de l'article provenant de la source International Scientific Research Publications
Lin, Lai-Jiu  1
@article{JNSA_2018_11_3_a7, author = {Lin, Lai-Jiu }, title = {Simultaneous iteration for variational inequalities over common solutions for finite families of nonlinear problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {394-416}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, doi = {10.22436/jnsa.011.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/} }
TY - JOUR AU - Lin, Lai-Jiu TI - Simultaneous iteration for variational inequalities over common solutions for finite families of nonlinear problems JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 394 EP - 416 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/ DO - 10.22436/jnsa.011.03.08 LA - en ID - JNSA_2018_11_3_a7 ER -
%0 Journal Article %A Lin, Lai-Jiu %T Simultaneous iteration for variational inequalities over common solutions for finite families of nonlinear problems %J Journal of nonlinear sciences and its applications %D 2018 %P 394-416 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/ %R 10.22436/jnsa.011.03.08 %G en %F JNSA_2018_11_3_a7
Lin, Lai-Jiu . Simultaneous iteration for variational inequalities over common solutions for finite families of nonlinear problems. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 394-416. doi : 10.22436/jnsa.011.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/
[1] Convex analysis and monotone operator theory in Hilbert spaces, Springer, , New York, 2011 | DOI
[2] From optimization and variational inequalities, Math. Student,, Volume 63 (1994), pp. 123-146
[3] Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276
[4] An iteration for fixed point problem and convex minimization problems with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17
[5] General methods for solving the split common fixed point problem, J. Optim. Theory Appl., Volume 165 (2015), pp. 385-404 | Zbl | DOI
[6] A multiprojection algorithm using Bregman projection in a product space, Numer. Algorithms,, Volume 8 (1994), pp. 221-239 | DOI | Zbl
[7] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600
[8] Moudafi’s open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problem, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17 | DOI
[9] Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | DOI | Zbl
[10] A simultaneous iteration methods for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14
[11] Mathematical programming over the solution set of the minimization problem for the sum of two convex functions, J. Nonlinear Convex Anal., Volume 17 (2016), pp. 2105-2118 | Zbl
[12] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[13] Strong convergence of split common fixed point problem, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 1248-1266 | DOI
[14] Variational inequalities over split equality fixed point sets of strongly quasi-nonexpansive mappings, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 1781-1800
[15] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl
[16] Weak and strong convergence theorems for strict pseudo-contraction in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI
[17] A note on the split common fixed point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087 | DOI
[18] A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., Volume 79 (2013), pp. 117-121 | Zbl | DOI
[19] Simultaneous iterative methodsfor split equality problems, Trans. Math. Program Appl., Volume 2013 (2013), pp. 1-10
[20] Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 1814-1822 | DOI | Zbl
[21] Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., Volume 23 (2015), pp. 205-221 | DOI
[22] Viscosity approximation for the multiple -set split equality fixed point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 4254-4268
[23] Simultaneous iterative algorithm for the split equality fixed point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 154-165 | DOI
[24] The split common fixed point for demicontractive mappings and quasi-nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2976-2985 | DOI
[25] Mathematical programing with multiple sets split monotone variational inclusion constraints, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-27 | DOI
[26] Simultaneous iterative algorithm for the split common fixed point problem governed by quasinonexpansive mappings, J. Nonlinear and Convex Anal. (accepted)
[27] Viscosity approximate methods for trhe split equality quasi-nonexpansive operators, Acta Math. Sci. Ser. B Engl. Ed., Volume 36 (2016), pp. 1474-1486
Cité par Sources :