Simultaneous iteration for variational inequalities over common solutions for finite families of nonlinear problems
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 394-416.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we apply Theorem 3.2 of [G. M. Lee, L.-J. Lin, J. Nonlinear Convex Anal., ${\bf 18}$ (2017), 1781--1800] to study the variational inequality over split equality fixed point problems for three finite families of strongly quasi-nonexpansive mappings. Then we use this result to study variational inequalities over split equality for three various finite families of nonlinear mappings. We give a unified method to study split equality for three various finite families of nonlinear problems. Our results contain many results on split equality fixed point problems and multiple sets split feasibility problems as special cases. Our results can treat large scale of nonlinear problems by group these problems into finite families of nonlinear problems, then we use simultaneous iteration to find the solutions of these problems. Our results will give a simple and quick method to study large scale of nonlinear problems and will have many applications to study large scale of nonlinear problems.
DOI : 10.22436/jnsa.011.03.08
Classification : 47H06, 47H09, 47H10, 47J25, 65K15
Keywords: Split equality fixed point problem, split fixed point problem, quasi-pseudocontractive mapping, demicontractive mapping, pseudo-contractive mapping

Lin, Lai-Jiu  1

1 Department of Mathematics, National Changhua University of Education, Changhua, 50058, Taiwan
@article{JNSA_2018_11_3_a7,
     author = {Lin, Lai-Jiu },
     title = {Simultaneous iteration for variational inequalities over  common solutions for finite families of nonlinear problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {394-416},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/}
}
TY  - JOUR
AU  - Lin, Lai-Jiu 
TI  - Simultaneous iteration for variational inequalities over  common solutions for finite families of nonlinear problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 394
EP  - 416
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/
DO  - 10.22436/jnsa.011.03.08
LA  - en
ID  - JNSA_2018_11_3_a7
ER  - 
%0 Journal Article
%A Lin, Lai-Jiu 
%T Simultaneous iteration for variational inequalities over  common solutions for finite families of nonlinear problems
%J Journal of nonlinear sciences and its applications
%D 2018
%P 394-416
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/
%R 10.22436/jnsa.011.03.08
%G en
%F JNSA_2018_11_3_a7
Lin, Lai-Jiu . Simultaneous iteration for variational inequalities over  common solutions for finite families of nonlinear problems. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 394-416. doi : 10.22436/jnsa.011.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.08/

[1] Bauschke, H. H.; Combettes, P. L. Convex analysis and monotone operator theory in Hilbert spaces, Springer, , New York, 2011 | DOI

[2] Blum, E.; Oettli, W. From optimization and variational inequalities, Math. Student,, Volume 63 (1994), pp. 123-146

[3] Browder, F. E. Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276

[4] Cai, G.; Shehu, Y. An iteration for fixed point problem and convex minimization problems with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17

[5] Cegielski, A. General methods for solving the split common fixed point problem, J. Optim. Theory Appl., Volume 165 (2015), pp. 385-404 | Zbl | DOI

[6] Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projection in a product space, Numer. Algorithms,, Volume 8 (1994), pp. 221-239 | DOI | Zbl

[7] Censor, Y.; Segal, A. The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600

[8] Chang, S.-S.; Wang, L.; Tang, Y. K.; Wang, G. Moudafi’s open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problem, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17 | DOI

[9] Chang, S.-S.; L.Wang; Qin, L.-J. Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | DOI | Zbl

[10] Che, H.; Li, M. A simultaneous iteration methods for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14

[11] Chuang, C.-S.; Lin, L.-J.; Yu, Z.-T. Mathematical programming over the solution set of the minimization problem for the sum of two convex functions, J. Nonlinear Convex Anal., Volume 17 (2016), pp. 2105-2118 | Zbl

[12] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136

[13] Eslamian, M.; Eslamian, P. Strong convergence of split common fixed point problem, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 1248-1266 | DOI

[14] Lee, 14] G. M.; Lin, L.-J. Variational inequalities over split equality fixed point sets of strongly quasi-nonexpansive mappings, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 1781-1800

[15] Maingé, P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl

[16] Marino, G.; Xu, H.-K. Weak and strong convergence theorems for strict pseudo-contraction in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI

[17] Moudafi, A. A note on the split common fixed point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087 | DOI

[18] Moudafi, A. A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., Volume 79 (2013), pp. 117-121 | Zbl | DOI

[19] Moudafi, A.; AI-Shemas, E. Simultaneous iterative methodsfor split equality problems, Trans. Math. Program Appl., Volume 2013 (2013), pp. 1-10

[20] Osilike, M. O.; Isiogugu, F. O. Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 1814-1822 | DOI | Zbl

[21] Takahashi, W.; Xu, H.-K.; Yao, J.-C. Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., Volume 23 (2015), pp. 205-221 | DOI

[22] Wang, Y.; Fang, X. Viscosity approximation for the multiple -set split equality fixed point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 4254-4268

[23] Y.Wang; Kim, T. H. Simultaneous iterative algorithm for the split equality fixed point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 154-165 | DOI

[24] Wang, Y.; Kim, T.-H.; Fang, X.; He, H. The split common fixed point for demicontractive mappings and quasi-nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2976-2985 | DOI

[25] Yu, Z.-T.; Lin, L.-J.; Chuang, C.-S. Mathematical programing with multiple sets split monotone variational inclusion constraints, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-27 | DOI

[26] Zhao, J.; He, S. N. Simultaneous iterative algorithm for the split common fixed point problem governed by quasinonexpansive mappings, J. Nonlinear and Convex Anal. (accepted)

[27] Zhao, J.; Wang, S. Viscosity approximate methods for trhe split equality quasi-nonexpansive operators, Acta Math. Sci. Ser. B Engl. Ed., Volume 36 (2016), pp. 1474-1486

Cité par Sources :