Voir la notice de l'article provenant de la source International Scientific Research Publications
Pyo, Sung-Soo  1
@article{JNSA_2018_11_3_a6, author = {Pyo, Sung-Soo }, title = {Some identities of degenerate {Fubini} polynomials arising from differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {383-393}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, doi = {10.22436/jnsa.011.03.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/} }
TY - JOUR AU - Pyo, Sung-Soo TI - Some identities of degenerate Fubini polynomials arising from differential equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 383 EP - 393 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/ DO - 10.22436/jnsa.011.03.07 LA - en ID - JNSA_2018_11_3_a6 ER -
%0 Journal Article %A Pyo, Sung-Soo %T Some identities of degenerate Fubini polynomials arising from differential equations %J Journal of nonlinear sciences and its applications %D 2018 %P 383-393 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/ %R 10.22436/jnsa.011.03.07 %G en %F JNSA_2018_11_3_a6
Pyo, Sung-Soo . Some identities of degenerate Fubini polynomials arising from differential equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 383-393. doi : 10.22436/jnsa.011.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/
[1] Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl
[2] Those Fascinating Numbers, American Mathematical Society, Providence, 2009 | Zbl
[3] Some identities of Fubini polynomials arising from differential equations, Adv. Studies Contem. Math., Volume 28 (2018)
[4] Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory, Volume 132 (2012), pp. 2854-2865 | Zbl | DOI
[5] λ-analogue of Stirling numbers of the first kind, Adv. Stud. Contemp. Math., Kyungshang, Volume 27 (2017), pp. 423-429 | Zbl
[6] Differential equations for Changhee polynomials and their applications, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 2857-2864 | Zbl
[7] Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation, Bull. Korean Math. Soc., Volume 52 (2015), pp. 2001-2010 | Zbl
[8] A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., Volume 23 (2016), pp. 88-92 | Zbl
[9] A note on degenerate Fubini polynomials, Proc. Jangjeon. Math. Soc., Volume 20 (2017), pp. 521-531
[10] Differential equations associated with Mittag-Leffer polynomials, Glob. J. Pure Appl. Math., Volume 12 (2016), pp. 2839-2847
[11] Differential equations associated with Genocchi polynomials, Glob. J. Pure Appl. Math., Volume 12 (2016), pp. 4579-4585
[12] Differential equations associated with degenerate Bell polynomials, Inter. J. Pure Appl. Math., Volume 108 (2016), pp. 551-559
[13] Revisit nonlinear differential equations arising from the generating functions of degenerate Bernoulli numbers, Adv. Stud. Contemp. Math., Volume 2016 (26), pp. 401-406 | Zbl
[14] A note on Daehee numbers arising from differential equations, Glob. J. Pure Appl., Volume 12 (2016), pp. 2349-2354
[15] Some identities of degenerate Genocchi polynomials, Bull. Korean Math. Soc., Volume 53 (2016), pp. 569-579 | Zbl
[16] A generalization of Fubini’s number, Studia Univ. Babeş-Bolyai Math. , Volume 31 (1986), pp. 60-65 | Zbl
[17] The hypercube of resistors, asymptotic expansions, and preferential arrangements, Math. Mag., Volume 83 (2010), pp. 331-346 | Zbl
[18] Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear Differential equation, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 6219-6228
[19] Degenerate Cauchy numbers and polynomials of the fourth kind, Adv. Studies. Contemp. Math., Volume 2018 (28)
[20] Degenerate Cauchy numbers of the third kind, preprint (2018)
[21] Permutations and combination locks, Math. Mag., Volume 68 (1995), pp. 243-253 | Zbl
Cité par Sources :