Some identities of degenerate Fubini polynomials arising from differential equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 383-393.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently, Kim et al. have studied degenerate Fubini polynomials in [T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, J. Nonlinear Sci. Appl., ${\bf 9}$ (2016), 2857--2864]. Jang and Kim presented some identities of Fubini polynomials arising from differential equations in [G.-W. Jang, T. Kim, Adv. Studies Contem. Math., ${\bf 28}$ (2018), to appear]. In this paper, we drive differential equations from the generating function of the degenerate Fubini polynomials. In addition, we obtain some identities from those differential equations.
DOI : 10.22436/jnsa.011.03.07
Classification : 11B68, 11B83, 42A16
Keywords: Differential equations, Fubini polynomials, degenerate Fubini polynomials

Pyo, Sung-Soo  1

1 Department of Mathematics Education, Silla University, Busan, Republic of Korea, Busan, Republic of Korea
@article{JNSA_2018_11_3_a6,
     author = {Pyo, Sung-Soo },
     title = {Some identities of degenerate {Fubini} polynomials arising from differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {383-393},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/}
}
TY  - JOUR
AU  - Pyo, Sung-Soo 
TI  - Some identities of degenerate Fubini polynomials arising from differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 383
EP  - 393
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/
DO  - 10.22436/jnsa.011.03.07
LA  - en
ID  - JNSA_2018_11_3_a6
ER  - 
%0 Journal Article
%A Pyo, Sung-Soo 
%T Some identities of degenerate Fubini polynomials arising from differential equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 383-393
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/
%R 10.22436/jnsa.011.03.07
%G en
%F JNSA_2018_11_3_a6
Pyo, Sung-Soo . Some identities of degenerate Fubini polynomials arising from differential equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 383-393. doi : 10.22436/jnsa.011.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.07/

[1] Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl

[2] Koninck, J.-M. De Those Fascinating Numbers, American Mathematical Society, Providence, 2009 | Zbl

[3] Jang, G.-W.; Kim, T. Some identities of Fubini polynomials arising from differential equations, Adv. Studies Contem. Math., Volume 28 (2018)

[4] Kim, T. Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory, Volume 132 (2012), pp. 2854-2865 | Zbl | DOI

[5] Kim, T. λ-analogue of Stirling numbers of the first kind, Adv. Stud. Contemp. Math., Kyungshang, Volume 27 (2017), pp. 423-429 | Zbl

[6] Kim, T.; Dolgy, D. V.; Kim, D. S.; Seo, J. J. Differential equations for Changhee polynomials and their applications, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 2857-2864 | Zbl

[7] Kim, D. S.; Kim, T. Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation, Bull. Korean Math. Soc., Volume 52 (2015), pp. 2001-2010 | Zbl

[8] Kim, T.; Kim, D. S. A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., Volume 23 (2016), pp. 88-92 | Zbl

[9] Kim, T.; Kim, D. S.; Jang, G.-W. A note on degenerate Fubini polynomials, Proc. Jangjeon. Math. Soc., Volume 20 (2017), pp. 521-531

[10] Kim, T.; Kim, D. S.; Jang, L. C.; Kwon, H. I. Differential equations associated with Mittag-Leffer polynomials, Glob. J. Pure Appl. Math., Volume 12 (2016), pp. 2839-2847

[11] Kim, S.; Kim, B. M.; Kwon, J. Differential equations associated with Genocchi polynomials, Glob. J. Pure Appl. Math., Volume 12 (2016), pp. 4579-4585

[12] Kim, T.; Kim, D. S.; Seo, J. J. Differential equations associated with degenerate Bell polynomials, Inter. J. Pure Appl. Math., Volume 108 (2016), pp. 551-559

[13] Kim, T.; Seo, J. J. Revisit nonlinear differential equations arising from the generating functions of degenerate Bernoulli numbers, Adv. Stud. Contemp. Math., Volume 2016 (26), pp. 401-406 | Zbl

[14] Kwon, H. I.; Kim, T.; Seo, J. J. A note on Daehee numbers arising from differential equations, Glob. J. Pure Appl., Volume 12 (2016), pp. 2349-2354

[15] Lim, D. Some identities of degenerate Genocchi polynomials, Bull. Korean Math. Soc., Volume 53 (2016), pp. 569-579 | Zbl

[16] Muresan, M.; Toader, G. A generalization of Fubini’s number, Studia Univ. Babeş-Bolyai Math. , Volume 31 (1986), pp. 60-65 | Zbl

[17] Pippenger, N. The hypercube of resistors, asymptotic expansions, and preferential arrangements, Math. Mag., Volume 83 (2010), pp. 331-346 | Zbl

[18] Pyo, S.-S.; Kim, T.; Rim, S.-H. Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear Differential equation, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 6219-6228

[19] Pyo, S.-S. Degenerate Cauchy numbers and polynomials of the fourth kind, Adv. Studies. Contemp. Math., Volume 2018 (28)

[20] Pyo, S.-S.; Kim, T.; Rim, S.-H. Degenerate Cauchy numbers of the third kind, preprint (2018)

[21] Velleman, D. J.; Call, G. S. Permutations and combination locks, Math. Mag., Volume 68 (1995), pp. 243-253 | Zbl

Cité par Sources :