Voir la notice de l'article provenant de la source International Scientific Research Publications
$ y_{m+1}=\frac{y_{m} y_{m-2}^\alpha y_{m-4}^\beta+y_{m} +y_{m-2}^\alpha +y_{m-4}^\beta + \gamma }{y_{m}y_{m-2}^\alpha + y_{m-2}^\alpha y_{m-4}^\beta+y_{m} y_{m-4}^\beta+ \gamma +1} , \quad m=0,1,2,3, \ldots, $ |
Ibrahim, Tarek F.  1
@article{JNSA_2018_11_3_a5, author = {Ibrahim, Tarek F. }, title = {Bifurcation and periodically semicycles for fractional difference equation of fifth order}, journal = {Journal of nonlinear sciences and its applications}, pages = {375-382}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, doi = {10.22436/jnsa.011.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.06/} }
TY - JOUR AU - Ibrahim, Tarek F. TI - Bifurcation and periodically semicycles for fractional difference equation of fifth order JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 375 EP - 382 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.06/ DO - 10.22436/jnsa.011.03.06 LA - en ID - JNSA_2018_11_3_a5 ER -
%0 Journal Article %A Ibrahim, Tarek F. %T Bifurcation and periodically semicycles for fractional difference equation of fifth order %J Journal of nonlinear sciences and its applications %D 2018 %P 375-382 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.06/ %R 10.22436/jnsa.011.03.06 %G en %F JNSA_2018_11_3_a5
Ibrahim, Tarek F. . Bifurcation and periodically semicycles for fractional difference equation of fifth order. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 375-382. doi : 10.22436/jnsa.011.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.06/
[1] On the dynamics of a higher-order rational difference equation, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-8
[2] Dynamics of a discrete Lotka-Volterra model , Adv. Difference Equ., Volume 2013 (2013), pp. 1-13 | DOI
[3] On the global attractivity of difference equation of higher order, Carpathian J. Math., Volume 24 (2008), pp. 45-53
[4] On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., Volume 7 (2001), pp. 837-850 | Zbl | DOI
[5] Periodicity and Solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1361-1390 | DOI | Zbl
[6] Solutions and Periodicity of a Rational Recursive Sequences of order Five, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 95-112 | DOI | Zbl
[7] Periodicity and Global Attractivity of Difference Equation of Higher Order, J. Comput. Anal. Appl., Volume 16 (2014), pp. 552-564 | Zbl
[8] Global stability of a higher-order difference equation, Iran. J. Sci. Technol. Trans. A Sci., Volume 41 (2017), pp. 51-58 | DOI
[9] Max-Type System Of Difference Equations With Positive Two-Periodic Sequences, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2541-2553 | Zbl | DOI
[10] Global behavior of Nonlinear Difference Equations of Higher Order with Applications, Academic Publishers Group, Dordrecht, 1993 | DOI
[11] Open problems and conjectures, J. Difference Equa. Appl., Volume 10 (2004), pp. 1119-1127
[12] Global behavior for a fourth-order rational difference equation, J. Math. Anal. Appl., Volume 312 (2005), pp. 555-563 | DOI
[13] The rule of trajectory structure and global asymptotic stability for a nonlinear difference equation, Appl. Math. Lett., Volume 19 (2006), pp. 1152-1158 | DOI
[14] On a second order rational difference equation , Hacet. J. Math. Stat., Volume 41 (2012), pp. 867-874
[15] On the positive solutions of the difference equation system \(x_{n+1} = \frac{1}{ z_n} , y_{n+1} = \frac{y_n}{ x_n+y_{n-1}} , z_{n+1} = \frac{1}{ x_{n-1}}\) , J. Inst. Math. Comp. Sci., Volume 18 (2005), pp. 135-136
[16] On the global attractivity of two nonlinear difference equations, J. Math. Sci., Volume 177 (2011), pp. 487-499 | Zbl | DOI
Cité par Sources :