Existence of solutions for a class of second-order impulsive Hamiltonian system with indefinite linear part
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 368-374.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider a class of second-order impulsive Hamiltonian system with indefinite linear part. By using saddle point theorem in critical point theory, an existence result is obtained, which extends and improves some existing results.
DOI : 10.22436/jnsa.011.03.05
Classification : 39A11, 58E05, 70H05.
Keywords: Impulsive Hamiltonian system, saddle point theorem, solutions, existence

Zhang, Qiongfen  1

1 College of Science, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China
@article{JNSA_2018_11_3_a4,
     author = {Zhang, Qiongfen },
     title = {Existence of solutions for a class of second-order impulsive {Hamiltonian} system with indefinite linear part},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {368-374},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.05/}
}
TY  - JOUR
AU  - Zhang, Qiongfen 
TI  - Existence of solutions for a class of second-order impulsive Hamiltonian system with indefinite linear part
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 368
EP  - 374
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.05/
DO  - 10.22436/jnsa.011.03.05
LA  - en
ID  - JNSA_2018_11_3_a4
ER  - 
%0 Journal Article
%A Zhang, Qiongfen 
%T Existence of solutions for a class of second-order impulsive Hamiltonian system with indefinite linear part
%J Journal of nonlinear sciences and its applications
%D 2018
%P 368-374
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.05/
%R 10.22436/jnsa.011.03.05
%G en
%F JNSA_2018_11_3_a4
Zhang, Qiongfen . Existence of solutions for a class of second-order impulsive Hamiltonian system with indefinite linear part. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 368-374. doi : 10.22436/jnsa.011.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.05/

[1] Agarwal, R. P.; Bhaskar, T. G.; Perea, K. Some results for impulsive problems via Morse theory , J. Math. Anal. Appl., Volume 409 (2014), pp. 752-759 | Zbl | DOI

[2] Baĭnov, D.; Simeonov, P. Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific Technical, Harlow, 1993

[3] Chen, P.; X. H. Tang Existence of solutions for a class of p-Laplacian systems with impulsive effects , Taiwanese J. Math., Volume 16 (2012), pp. 803-828 | DOI

[4] Chikrii, A. A.; Matychyn, I. I.; Chikrii, K. A. Differential games with impulse control , Birkhuser Boston, Boston, 2007 | DOI

[5] Crück, E.; Quincampoix, M.; P. Saint-Pierre Pursuit-evasion games with impulsive dynamics, Birkhuser Boston, Boston, 2007 | Zbl | DOI

[6] Gong, W.-Z.; Zhang, Q.-F.; X. H. Tang Existence of subharmonic solutions for a class of second-order p-Laplacian systems with impulsive effects , J. Appl. Math., Volume 2012 (2012 ), pp. 1-18 | Zbl

[7] Kyritsi, S. T.; Papageorgiou, N. S. On superquadratic periodic systems with indefinite linear part , Nonlinear Anal., Volume 72 (2010), pp. 946-954 | DOI | Zbl

[8] Lakshmikantham, V.; Baĭnov, D. D.; P. S. Simeonov Theory of Impulsive Differential Equations, World Scientific Press, Singapore, 1989

[9] Nieto, J. J.; D. O’Regan Variational approach to impulsive differential equations , Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 680-690 | DOI

[10] P. H. Rabinowitz Minimax methods in critical point theory with applications to differential equations , Mathematical Society, Providence, 1986 | DOI

[11] Stone, L.; Shulgin, B.; Agur, Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modelling, Volume 31 (2000), pp. 207-215 | Zbl | DOI

[12] Sun, J.; Chen, H.; Yang, L. Variational methods to fourth-order impulsive differential equations , J. Appl. Math. Comput., Volume 35 (2011), pp. 323-340 | DOI

[13] Wang, Q.; M. Wang Existencce of solution for impulsive differential equations with indefinite linear part , Appl. Math. Lett., Volume 51 (2016), pp. 41-47 | DOI

[14] Q.-F. Zhang Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems with impulsive effects, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-12

[15] Zhang, X.; Tang, X. A note on the minimal periodic solutions of nonconvex super-linear Hamiltonian system, Appl. Math. Comput., Volume 219 (2013), pp. 7586-7590 | DOI

[16] Zhang, X.; Tang, X. Non-constant periodic solutions for second order Hamiltonian system involving the p-Laplacian, Adv. Nonlinear Stud., Volume 13 (2013), pp. 945-964 | DOI | Zbl

[17] Zhang, X.; X. Tang Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems, Commun. Pure Appl. Anal., Volume 13 (2014), pp. 75-95 | Zbl | DOI

Cité par Sources :