Weakly $\mathbf{(s,r)}$-contractive multi-valued operators on $\mathbf{b}$-metric space
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 358-367.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we introduce the notion of weakly $(s,r)$-contractive multi-valued operator on $b$-metric space and establish some fixed point theorems for this operator. In addition, an application to the differential equation is given to illustrate usability of obtained results.
DOI : 10.22436/jnsa.011.03.04
Classification : 47H04, 47H09, 47H10
Keywords: \(b\)-metric space, weakly \((s, r)\)-contractive multi-valued operator, fixed point theorem

Ye, Lingjuan  1 ; Shen, Congcong  1

1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China
@article{JNSA_2018_11_3_a3,
     author = {Ye, Lingjuan  and Shen, Congcong },
     title = {Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {358-367},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.04/}
}
TY  - JOUR
AU  - Ye, Lingjuan 
AU  - Shen, Congcong 
TI  - Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 358
EP  - 367
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.04/
DO  - 10.22436/jnsa.011.03.04
LA  - en
ID  - JNSA_2018_11_3_a3
ER  - 
%0 Journal Article
%A Ye, Lingjuan 
%A Shen, Congcong 
%T Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space
%J Journal of nonlinear sciences and its applications
%D 2018
%P 358-367
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.04/
%R 10.22436/jnsa.011.03.04
%G en
%F JNSA_2018_11_3_a3
Ye, Lingjuan ; Shen, Congcong . Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 358-367. doi : 10.22436/jnsa.011.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.04/

[1] Banach, S. Sur les operations dans les ensembles abstraits et leures applications aux equations integrales, Fundam. Math., Volume 3 (1922), pp. 133-181

[2] Boriceanu, M.; Bota, M.; A. Petruşel Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377 | DOI | Zbl

[3] S. Czerwik Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[4] Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276

[5] Dutta, P. N.; Choudhury, B. S. A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8 | DOI

[6] Hussain, N.; Đorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-12 | DOI

[7] Hussain, N.; Parvaneh, V.; Roshan, J. R.; Z. Kadelburg Fixed points of cyclic weakly (\(\psi,\phi, L,A, B\))-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-18 | DOI | Zbl

[8] Hussain, N.; Yasmin, N.; N. Shafqat Multi-valued Ćirić contractions on metric spaces with applications, Filomat, Volume 28 (2014), pp. 1953-1964 | DOI | Zbl

[9] Işık, H.; D. Türkoğlu Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces , Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-12 | Zbl | DOI

[10] Işık, H.; Türkoğlu, D. Coupled fixed point theorems for new contractive mixed monotone mappings and applications to integral equations, Filomat, Volume 28 (2014), pp. 1253-1264 | DOI | Zbl

[11] Işık, H.; D. Türkoğlu Generalized weakly alfa-contractive mappings and applications to ordinary differential equations , Miskolc Math. Notes, Volume 17 (2016), pp. 365-379 | Zbl | DOI

[12] Kamran, T.; S. Hussain Weakly (s, r)-contractive multi-valued operators, Rend. Circ. Mat. Palermo., Volume 64 (2015), pp. 475-482 | DOI | Zbl

[13] Markin, J. T. Continuous dependence of fixed point sets , Proc. Amer. Math. Soc., Volume 38 (1973), pp. 545-547 | DOI

[14] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 2153-2163 | DOI | Zbl

[15] Nadler, S. B. Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[16] Nieto, J. J.; R. Rodríguez-López Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order, Volume 22 (2005), pp. 223-239 | DOI | Zbl

[17] O. Popescu A new type of contractive multivalued operators , Bull. Sci. Math., Volume 137 (2013), pp. 30-44 | DOI

[18] S. Reich Fixed points of contractive functions, Boll. Un. Mat. Ital., Volume 5 (1972), pp. 26-42

[19] Reich, S.; A. J. Zaslavski Genericity in Nonlinear Analysis, Springer, New York, 2014 | Zbl | DOI

[20] Rhoades, B. H. Some theorems on weakly contractive maps, Nonlinear Anal., Volume 47 (2001), pp. 2683-2693 | DOI

[21] Roshan, J. R.; Parvaneh, V.; Kadelburg, Z. Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 229-245 | Zbl

[22] Roshan, J. R.; Parvaneh, V.; Kadelburg, Z.; N. Hussain New fixed point results in b-rectangular metric spaces , Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 614-634 | DOI

[23] I. A. Rus Basic problems of the metric fixed point theory revisited (II) , Studia Univ. Babeş-Bolyai Math., Volume 36 (1991), pp. 81-89 | Zbl

[24] Singh, S. L.; Czerwik, S.; Król, K.; Singh, A. Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., Volume 24 (2008), pp. 401-416 | Zbl

[25] Wang, L. The fixed point method for intuitionistic fuzzy stability of a quadratic functional equation , Fixed Point Theory Appl., Volume 2010 (2010 ), pp. 1-7

Cité par Sources :