A system of evolutionary problems driven by a system of hemivariational inequalities
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 342-357.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the differential system obtained by mixing a system of evolution equations and a system of hemivariational inequalities ((SEESHVI), for short). We prove the superpositional measurability and upper semicontinuity for the solution set of a general system of hemivariational inequalities, and establish the non-emptiness and compactness of the solution set of (SEESHVI).
DOI : 10.22436/jnsa.011.03.03
Classification : 49K40, 47J20, 49J52
Keywords: Evolution equation, hemivariational inequality, \(\nu\)-condensing mapping, generalized Clarke subdifferential

Ceng, Lu-Chuan  1 ; Wen, Ching-Feng  2 ; Yao, Jen-Chih  3 ; Yao, Yonghong  4

1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
2 Center for Fundamental Science; and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80702, Taiwan;Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80702, Taiwan
3 Center for General Education, China Medical University, Taichung 40402, Taiwan
4 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
@article{JNSA_2018_11_3_a2,
     author = {Ceng, Lu-Chuan  and Wen, Ching-Feng  and Yao, Jen-Chih  and Yao, Yonghong },
     title = {A system of evolutionary problems driven by a system of hemivariational inequalities},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {342-357},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.03/}
}
TY  - JOUR
AU  - Ceng, Lu-Chuan 
AU  - Wen, Ching-Feng 
AU  - Yao, Jen-Chih 
AU  - Yao, Yonghong 
TI  - A system of evolutionary problems driven by a system of hemivariational inequalities
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 342
EP  - 357
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.03/
DO  - 10.22436/jnsa.011.03.03
LA  - en
ID  - JNSA_2018_11_3_a2
ER  - 
%0 Journal Article
%A Ceng, Lu-Chuan 
%A Wen, Ching-Feng 
%A Yao, Jen-Chih 
%A Yao, Yonghong 
%T A system of evolutionary problems driven by a system of hemivariational inequalities
%J Journal of nonlinear sciences and its applications
%D 2018
%P 342-357
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.03/
%R 10.22436/jnsa.011.03.03
%G en
%F JNSA_2018_11_3_a2
Ceng, Lu-Chuan ; Wen, Ching-Feng ; Yao, Jen-Chih ; Yao, Yonghong . A system of evolutionary problems driven by a system of hemivariational inequalities. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 342-357. doi : 10.22436/jnsa.011.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.03/

[1] Ceng, L.-C.; Gupta, H.; Wen, C.-F. Well-posedness by perturbations of variational-hemivariational inequalities with perturbations, Filomat, Volume 26 (2012), pp. 881-895 | Zbl | DOI

[2] Ceng, L.-C.; Wong, N.-C.; J.-C. Yao Well-posedness for a class of strongly mixed variational-hemivariational inequalities with perturbations , J. Appl. Math., Volume 2012 (2012 ), pp. 1-21 | Zbl

[3] Chen, X.; Wang, Z. Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., Volume 23 (2013), pp. 1647-1671 | Zbl | DOI

[4] Costea, N.; V. Rădulescu Hartman-Stampacchia results for stably pseudomonotone operators and nonlinear hemivariational inequalities , Appl. Anal., Volume 89 (2010), pp. 175-188 | Zbl | DOI

[5] Costea, N.; Rădulescu, V. Inequality problems of quasi-hemivariational type involving set-valued operators and a nonlinear term, J. Global Optim., Volume 52 (2012), pp. 743-756 | DOI | Zbl

[6] K. Fan Some properties of convex sets related to fixed point theorems , Math. Ann., Volume 266 (1984), pp. 519-537 | DOI

[7] Filippov, A. F. On some problems of the theory of optimal control, Vestn. Moscow Univ., Volume 2 (1958), pp. 25-32

[8] Giannessi, F.; Khan, A. Regularization of non-coercive quasivariational inequalities, Control Cybern., Volume 29 (2000), pp. 91-110

[9] Gwinner, J. On the p-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral control and given friction, Appl. Numer. Math., Volume 59 (2009), pp. 2774-2784 | DOI

[10] J. Gwinner On a new class of differential variational inequalities and a stability result , Math. Program., Volume 139 (2013), pp. 205-221 | Zbl | DOI

[11] Han, L.; J.-S. Pang Non-Zenoness of a class of differential quasi-variational inequalities,, Math. Program., Volume 121 (2010), pp. 171-199 | Zbl | DOI

[12] Kamemskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space , Walter de Gruyter, Berlin, 2001 | DOI

[13] Khan, A. A.; Motreanu, D. Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities, J. Optim. Theory Appl., Volume 167 (2015), pp. 1136-1161 | Zbl | DOI

[14] Li, X.-S.; Huang, N.-J.; D. O’Regan Differential mixed variational inequalities in finite dimensional spaces , Nonlinear Anal., Volume 72 (2010), pp. 3875-3886 | DOI

[15] Z. Liu Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems, Volume 21 (2005), pp. 13-20 | DOI | Zbl

[16] Liu, Z.; Li, X.; D. Motreanu Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces , SIAM J. Control Optim., Volume 53 (2015), pp. 3228-3244 | DOI | Zbl

[17] Liu, Z.; Loi, N. V.; V. Obukhovskii Existence and global bifurcation of periodic solutions to a class of differential variational inequalities, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 2013 (2013 ), pp. 1-10 | DOI | Zbl

[18] Liu, Z.; B. Zeng Existence results for a class of hemivariational inequalities involving the stable (\(g, f, \alpha\))-quasimonotonicity , Topol. Methods Nonlinear Anal., Volume 47 (2016), pp. 195-217 | DOI | Zbl

[19] Liu, Z.; Zeng, S.; D. Motreanu Evolutionary problems driven by variational inequalities , J. Differential Equations, Volume 260 (2016), pp. 6787-6799 | Zbl | DOI

[20] Migórski, S.; Ochal, A.; M. Sofonea Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Springer, New York, 2012 | DOI

[21] Motreanu, D.; Panagiotopoulos, P. D. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications , Kluwer Academic, Dordrecht, 1999 | Zbl

[22] Naniewicz, Z.; P. D. Panagiotopoulos Mathematical Theory of Hemivariational Inequalities and Applications, CRC press, New York, 1994

[23] P. D. Panagiotopoulos Nonconvex superpotentials in sense of F.H. Clarke and applications , Mech. Res. Comm., Volume 8 (1981), pp. 335-340 | DOI

[24] Panagiotopoulos, P. D.; Fundo, M.; V. Rădulescu Existence theorems of Hartman-Stampacchia type for hemivariational inequalities and applications, J. Global Optim., Volume 15 (1999), pp. 41-54 | DOI | Zbl

[25] Pang, J.-S.; D. E. Stewart Differential variational inequalities , Math. Program., Volume 113 (2008), pp. 345-424

[26] Repovš, D.; C. Varga A Nash type solution for hemivariational inequality systems, Nonlinear Anal., Volume 74 (2011), pp. 5585-5590 | Zbl | DOI

[27] Wang, X.; N.-J. Huang A class of differential vector variational inequalities in finite dimensional spaces , J. Optim. Theory Appl., Volume 162 (2014), pp. 633-648 | Zbl | DOI

[28] Wang, Y.-M.; Xiao, Y.-B.; Wang, X.; Y. J. Cho Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1178-1192 | Zbl

[29] Xiao, Y.-B.; Huang, N.-J. Browder-Tikhonov regularization for a class of evolution second order hemivariational inequalities, J. Global Optim., Volume 45 (2009), pp. 371-388 | DOI | Zbl

[30] Xiao, Y.-B.; N.-J. Huang Well-posedness for a class of variational-hemivariational inequalities with perturbations, J. Optim. Theory Appl., Volume 151 (2011), pp. 33-51 | DOI

[31] Xiao, Y.-B.; Huang, N.-J.; Lu, J. A system of time-dependent hemivariational inequalities with Volterra integral terms, J. Optim. Theory Appl., Volume 165 (2015), pp. 837-853 | DOI | Zbl

[32] Yao, Y.-H.; N. Shahzad An algorithmic approach to the split variational inequality and fixed point problem, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 977-991

[33] Zegeye, H.; Shahzad, N.; Yao, Y.-H. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, Volume 64 (2015), pp. 453-471 | DOI | Zbl

[34] E. Zeidler Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York, 1990 | DOI

[35] Zhang, Y.; Y. He On stably quasimonotone hemivariational inequalities, Nonlinear Anal., Volume 74 (2011), pp. 3324-3332 | DOI | Zbl

Cité par Sources :