Some additive mappings on Banach ${\ast}$-algebras with derivations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 335-341.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We take into account some additive mappings in Banach $\ast$-algebras with derivations. We will first study the conditions for additive mappings with derivations on Banach $\ast$-algebras. Then we prove some theorems involving linear mappings on Banach $\ast$-algebras with derivations. So derivations on $C^{\ast}$-algebra are characterized.
DOI : 10.22436/jnsa.011.03.02
Classification : 16N60, 16W80, 39B72, 39B82, 46H40, 46L57
Keywords: Banach \(\ast\)-algebra, \(C^{\ast}\)-algebra, additive mapping with involution, derivation

Bae, Jae-Hyeong  1 ; Chang, Ick-Soon  2

1 Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
2 Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Republic of Korea
@article{JNSA_2018_11_3_a1,
     author = {Bae, Jae-Hyeong  and Chang, Ick-Soon },
     title = {Some additive mappings on {Banach} \({\ast}\)-algebras with derivations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {335-341},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.02/}
}
TY  - JOUR
AU  - Bae, Jae-Hyeong 
AU  - Chang, Ick-Soon 
TI  - Some additive mappings on Banach \({\ast}\)-algebras with derivations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 335
EP  - 341
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.02/
DO  - 10.22436/jnsa.011.03.02
LA  - en
ID  - JNSA_2018_11_3_a1
ER  - 
%0 Journal Article
%A Bae, Jae-Hyeong 
%A Chang, Ick-Soon 
%T Some additive mappings on Banach \({\ast}\)-algebras with derivations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 335-341
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.02/
%R 10.22436/jnsa.011.03.02
%G en
%F JNSA_2018_11_3_a1
Bae, Jae-Hyeong ; Chang, Ick-Soon . Some additive mappings on Banach \({\ast}\)-algebras with derivations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 335-341. doi : 10.22436/jnsa.011.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.02/

[1] Agarwal, R. P.; Saadati, R.; A. Salamati Approximation of the multiplicatives on random multi-normed space , J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-10 | Zbl | DOI

[2] Aoki, T. On the stability of the linear transformation in Banach spaces , J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66 | DOI

[3] Baderi, Z.; Saadati, R. Generalized stability of Euler-Lagrange quadratic functional equation in random normed spaces under arbitrary t-norms , Thai J. Math., Volume 14 (2016), pp. 585-590 | Zbl

[4] R. Badora On approximate ring homomorphisms , J. Math. Anal. Appl., Volume 276 (2002), pp. 589-597 | DOI

[5] R. Badora On approximate derivations, Math. Inequal. Appl., Volume 9 (2006), pp. 167-173

[6] Bonsall, F. F.; J. Duncan Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer- Verlag, New York-Heidelberg, 1973 | DOI

[7] Bourgin, D. G. Approximately isometric and multiplicative transformations on continuous function rings , Duke Math. J., Volume 16 (1949), pp. 385-397 | Zbl | DOI

[8] Brešar, M.; J. Vukman On some additive mappings in rings with involution, Aequationes Math., Volume 38 (1989), pp. 178-185 | DOI

[9] Brešar, M.; J. Vukman On left derivations and related mappings , Proc. Amer. Math. Soc., Volume 110 (1990), pp. 7-16 | DOI

[10] Cho, Y. J.; Park, C.-K.; Rassias, T. M.; Saadati, R. Stability of functional equations in Banach algebras, Springer, Cham, 2015 | DOI

[11] Daif, M. N.; M. S. Tammam El-Sayiad On generalized derivations of semiprime rings with involution, Int. J. Algebra, Volume 1 (2007), pp. 551-555 | DOI

[12] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436 | Zbl | DOI

[13] M. E. Gordji Nearly involutions on Banach algebras, A fixed point approach, Fixed Point Theory, Volume 14 (2013), pp. 117-123 | Zbl

[14] Hyers, D. H. On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1911), pp. 222-224

[15] Johnson, B. E.; A. M. Sinclair Continuity of derivations and a problem of Kaplansky , Amer. J. Math., Volume 90 (1968), pp. 1067-1073 | DOI | Zbl

[16] Kannappan, P. Functional equations and inequalities with applications, Springer Monographs in Mathematics, Springer, New York, 2009 | DOI

[17] Milovanović(ed.), G. V.; (ed.), T. M. Rassias Analytic number theory, approximation theory, and special functions, In honor of Hari M. Srivastava, Springer, New York, 2014 | DOI

[18] Park, C.-K.; Anastassiou, G. A.; Saadati, R.; S.-S. Yun Functional inequalities in fuzzy normed spaces, J. Comput. Anal. Appl., Volume 22 (2017), pp. 601-612

[19] Rassias, T. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300 | DOI

[20] Šemrl, P. The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory, Volume 18 (1994), pp. 118-122 | DOI | Zbl

[21] Singer, I. M.; Wermer, J. Derivations on commutative normed algebras, Math. Ann., Volume 129 (1955), pp. 260-264 | DOI

[22] Thomas, M. P. The image of a derivation is contained in the radical, Ann. of Math., Volume 128 (1988), pp. 435-460 | DOI

[23] S. M. Ulam A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1960

Cité par Sources :