Ground states solutions for modified fourth-order elliptic systems with steep well potential
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 323-334.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the following modified quasilinear fourth-order elliptic systems
$ \left\{\begin{array}{lll} \triangle^{2}u-\triangle u+(\lambda\alpha(x)+1)u-\frac{1}{2}\triangle(u^{2})u=\frac{p}{p+q}|u|^{p-2}|v|^{q}u,~~ \mbox{in} \;~\mathbb{R}^{N}, \\ \triangle^{2}v-\triangle v+(\lambda\beta(x)+1)v-\frac{1}{2}\triangle(v^{2})v=\frac{q}{p+q}|u|^{p}|v|^{q-2}v,~~ \mbox{in} \;~\mathbb{R}^{N},\end{array} \right.$
where $\triangle^{2}=\triangle(\triangle)$ is the biharmonic operator, $\lambda>0$, and $2$ $4$, $2^{\ast\ast}=\frac{2N}{N-4} \ (N\leq5)$ $(\mbox{if}~N\leq4, 2^{\ast\ast}=\infty)$ is the critical Sobolev exponent for the embedding $W^{2,2}(\mathbb{R}^{N})\hookrightarrow L^{2^{\ast\ast}}(\mathbb{R}^{N})$. Under some appropriate assumptions on $\alpha(x)$ and $\beta(x)$, we obtain that the above problem has nontrivial ground state solutions via the variational methods. We also explore the phenomenon of concentration of solutions.
DOI : 10.22436/jnsa.011.03.01
Classification : 35B09, 35J20
Keywords: Fourth-order elliptic, variational methods, ground state solutions, concentration

Shao, Liuyang 1 ; Chen, Haibo  1

1 School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, P. R. China
@article{JNSA_2018_11_3_a0,
     author = { Shao, Liuyang and Chen, Haibo },
     title = {Ground states solutions for modified  fourth-order elliptic systems with steep well potential},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {323-334},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     doi = {10.22436/jnsa.011.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.01/}
}
TY  - JOUR
AU  -  Shao, Liuyang
AU  - Chen, Haibo 
TI  - Ground states solutions for modified  fourth-order elliptic systems with steep well potential
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 323
EP  - 334
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.01/
DO  - 10.22436/jnsa.011.03.01
LA  - en
ID  - JNSA_2018_11_3_a0
ER  - 
%0 Journal Article
%A  Shao, Liuyang
%A Chen, Haibo 
%T Ground states solutions for modified  fourth-order elliptic systems with steep well potential
%J Journal of nonlinear sciences and its applications
%D 2018
%P 323-334
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.01/
%R 10.22436/jnsa.011.03.01
%G en
%F JNSA_2018_11_3_a0
 Shao, Liuyang; Chen, Haibo . Ground states solutions for modified  fourth-order elliptic systems with steep well potential. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 3, p. 323-334. doi : 10.22436/jnsa.011.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.03.01/

[1] Alvarez-Caudevilla, P.; Coloradoa, E.; V. A. Galaktionov Existence of solutions for a system of coupled nonlinear stationary bi-harmonic Schrödinger equations , Nonlinear Anal., Volume 23 (2015), pp. 78-93 | Zbl | DOI

[2] Bartsch, T.; Z. Q. Wang Existence and multiplicity results for superlinear elliptic problems on \(R^N\) , Comm. Partial Differential Equations, Volume 20 (1995), pp. 1725-1741 | DOI

[3] Brézis, H.; E. Lieb A relation between point convergence of functions and convergence of functionals , Proc. Amer. Math. Soc., Volume 88 (1983), pp. 486-490 | DOI

[4] Candito, P.; Li, L.; Livrea, R. Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic, Nonlinear Anal., Volume 75 (2012), pp. 6360-6369 | Zbl | DOI

[5] Chen, S.; Liu, J.; X. Wu Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on \(R^N\), Appl. Math. Comput., Volume 248 (2014), pp. 593-608 | DOI

[6] Chen, Y.; P. J. McKenna Traveling waves in a nonlinear suspension beam: theoretical results and numerical observations, J. Differ. Equ., Volume 136 (1997), pp. 325-355

[7] Choi, Q.-H.; T. Jung Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation , Acta Math. Sci., Volume 19 (1999), pp. 361-374 | DOI

[8] Deng, Z.-Y.; Y.-S. Huang Symmetric solutions for a class of singular biharmonic elliptic systems involving critical exponents, Appl. Math. Comput., Volume 264 (2015), pp. 323-334 | DOI

[9] Hajipour, M.; Malek, A. High accurate NRK and MWENO scheme fornonlinear degenerate parabolic PDEs, Appl. Math. Model., Volume 36 (2012), pp. 4439-4451 | DOI

[10] Hajipour, M.; A. Malek High accurate modified WENO method for the solution of Black-Scholes equation, Comput. Appl. Math., Volume 34 (2015), pp. 125-140 | Zbl | DOI

[11] Huang, Y.-S.; X.-Q. Liu Sign-changing solutions for p-biharmonic equations with Hardy potential in the half-space , J. Math. Anal. Appl., Volume 444 (2016), pp. 1417-1437 | DOI | Zbl

[12] Lazer, A. C.; P. J. McKenna Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis , SIAM Rev., Volume 32 (1990), pp. 537-578 | DOI | Zbl

[13] Lazer, A. C.; P. J. McKenna Global bifurcation and a theorem of Tarantello , J. Math. Anal. Appl., Volume 181 (1994), pp. 648-655 | DOI | Zbl

[14] Liu, H.; H. Chen Least energy nodal solution for quasilinear biharmonic equations with critical exponent in \(R^N\), Appl. Math. Lett., Volume 48 (2015), pp. 85-90 | DOI | Zbl

[15] Liu, H.; H. Chen Ground-state solution for a class of biharmonic equations including critical exponent, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3333-3343 | Zbl

[16] D. Lü Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent,, Nonlinear Anal., Volume 74 (2011), pp. 6371-6382 | DOI | Zbl

[17] McKenna, P. J.; W. Walter Traveling waves in a suspension bridge , SIAM J. Appl. Math., Volume 50 (1990), pp. 703-715 | DOI

[18] M. Willem Minimax Theorems, Birkhäuser, Berlin, 1996

[19] Pimenta, M. T. O.; S. H. M. Soares Existence and concentration of solutions for a class of biharmonic equations, J. Math. Anal. Appl., Volume 390 (2012), pp. 274-289 | Zbl | DOI

[20] Shao, L.-Y.; Chen, H. Multiple solutions for Schrödinger-Poisson systems with sign-changing potential and critical nonlinearity , Electron. J. Differential Equations, Volume 2016 (2016), pp. 1-8 | Zbl

[21] Shao, L.-Y.; H. Chen Existence and concentration result for a quasilinear Schrödinger equation with critical growth, Z. Angew. Math. Phys., Volume 2017 (2017 ), pp. 1-16 | Zbl | DOI

[22] Shi, H.; H. Chen Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, J. Math. Anal. Appl., Volume 452 (2017), pp. 578-594 | Zbl | DOI

[23] Sun, J.; Chu, J.; T.-F. Wu Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian , J. Differential Equations, Volume 262 (2017), pp. 945-977 | DOI | Zbl

[24] Szulkin, A.; T. Weth Ground state solutions for some indefinite variational problems, J. Funct. Anal., Volume 257 (2009), pp. 3802-3822 | Zbl | DOI

[25] N. S. Trudinger On Harnack type inequalities and their application to quasilinear elliptic equations , Comm. Pure Appl. Math., Volume 20 (1967), pp. 721-747 | Zbl | DOI

[26] Wang, F.; Avci, M.; An, Y. Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl., Volume 409 (2014), pp. 140-146 | DOI

[27] Wang, Y.-J.; Y.-T. Shen Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Differential Equations, Volume 246 (2009), pp. 3109-3125 | Zbl | DOI

[28] Xiong, H.; Y.-T. Shen Nonlinear biharmonic equations with critical potential , Acta Math. Sci., Volume 21 (2005), pp. 1285-1294 | DOI

[29] Zhang, J.; Li, S. Multiple nontrivial solutions for some fourth-order semilinear elliptic problems , Nonlinear Anal., Volume 60 (2005), pp. 221-230 | DOI | Zbl

[30] Zhang, W.; Tang, X.; J. Zhang Infinitely many solutions for fourth-order elliptic equations with general potentials , J. Math. Anal. Appl., Volume 407 (2013), pp. 359-368 | DOI | Zbl

[31] Zhang, J.; Tang, X.; W. Zhang Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential , J. Math. Anal. Appl., Volume 420 (2014), pp. 1762-1775 | Zbl | DOI

[32] Zhang, W.; Tang, X.; J. Zhang Infinitely many solutions for fourth-order elliptic equations with sign-changing potential , Taiwanese J. Math., Volume 18 (2014), pp. 645-659 | Zbl | DOI

[33] Zhang, W.; Tang, X.; J. Zhang Existence and concentration of solutions for sublinear fourth-order elliptic equations, Electron. J. Differential Equations, Volume 2015 (2015 ), pp. 1-9 | Zbl

[34] Zou, W.; M. Schechter Critical Point Theory and its Applications, Springer, New York, 2006

Cité par Sources :