Topological coincidence principles
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 303-315.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper a number of general coincidence principles are presented for set valued maps defined on subsets of completely regular topological spaces.
DOI : 10.22436/jnsa.011.02.11
Classification : 54H25, 47H10
Keywords: Coincidence points, continuation methods, essential maps, extendability

Jleli, Mohamed  1 ; O'Regan, Donal  2 ; Samet, Bessem  1

1 Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
2 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2018_11_2_a10,
     author = {Jleli, Mohamed  and O'Regan, Donal  and Samet, Bessem },
     title = {Topological coincidence principles},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {303-315},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.11/}
}
TY  - JOUR
AU  - Jleli, Mohamed 
AU  - O'Regan, Donal 
AU  - Samet, Bessem 
TI  - Topological coincidence principles
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 303
EP  - 315
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.11/
DO  - 10.22436/jnsa.011.02.11
LA  - en
ID  - JNSA_2018_11_2_a10
ER  - 
%0 Journal Article
%A Jleli, Mohamed 
%A O'Regan, Donal 
%A Samet, Bessem 
%T Topological coincidence principles
%J Journal of nonlinear sciences and its applications
%D 2018
%P 303-315
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.11/
%R 10.22436/jnsa.011.02.11
%G en
%F JNSA_2018_11_2_a10
Jleli, Mohamed ; O'Regan, Donal ; Samet, Bessem . Topological coincidence principles. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 303-315. doi : 10.22436/jnsa.011.02.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.11/

[1] L. Górniewicz Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | DOI

[2] Granas, A.; J. Dugundji Fixed Point Theory, Springer-Verlag, New York, 2003 | DOI

[3] D. O’Regan Generalized Leray-Schauder principles for general classes of maps in completely regular topological spaces, Appl. Anal., Volume 93 (2014), pp. 1674-1690 | DOI | Zbl

[4] D. O’Regan Abstract Leray-Schauder type alternatives and extensions, Serie Matematica, Analele Stiintifice ale Universitatii Ovidius Constanta, (to appear. )

[5] O’Regan, D.; Precup, R. Theorems of Leray-Schauder Type and Applications , Gordon and Breach Science Publishers, Amsterdam, 2001

Cité par Sources :