Modified viscosity type iteration for total asymptotically nonexpansive mappings in CAT(0) spaces and its application to optimization problems
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 288-302.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a modified two-step viscosity iteration process for total asymptotically nonexpansive mappings in CAT(0) spaces. We prove strong convergence of the proposed iteration process to a fixed point of total asymptotically nonexpansive mappings in CAT(0) spaces, which also shows that the limit of the sequence generated by proposed iteration process solves the solution of the variational inequality. We also provide illustrating a numerical example for supporting our main results. Moreover, we show the existence of solutions of our consequently results for some applications.
DOI : 10.22436/jnsa.011.02.10
Classification : 47H09, 47J20, 47J25
Keywords: Viscosity approximation methods, total asymptotically nonexpansive mapping, variational inequality, CAT(0) spaces

Kumam, Wiyada  1 ; Pakkaranang, Nuttapol  2 ; Kumam, Poom  3

1 Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand
2 KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
3 KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Facuty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140,, Thailand;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
@article{JNSA_2018_11_2_a9,
     author = {Kumam, Wiyada  and Pakkaranang, Nuttapol  and Kumam, Poom },
     title = {Modified viscosity type iteration for total asymptotically nonexpansive mappings  in {CAT(0)} spaces and its application to optimization problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {288-302},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.10/}
}
TY  - JOUR
AU  - Kumam, Wiyada 
AU  - Pakkaranang, Nuttapol 
AU  - Kumam, Poom 
TI  - Modified viscosity type iteration for total asymptotically nonexpansive mappings  in CAT(0) spaces and its application to optimization problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 288
EP  - 302
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.10/
DO  - 10.22436/jnsa.011.02.10
LA  - en
ID  - JNSA_2018_11_2_a9
ER  - 
%0 Journal Article
%A Kumam, Wiyada 
%A Pakkaranang, Nuttapol 
%A Kumam, Poom 
%T Modified viscosity type iteration for total asymptotically nonexpansive mappings  in CAT(0) spaces and its application to optimization problems
%J Journal of nonlinear sciences and its applications
%D 2018
%P 288-302
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.10/
%R 10.22436/jnsa.011.02.10
%G en
%F JNSA_2018_11_2_a9
Kumam, Wiyada ; Pakkaranang, Nuttapol ; Kumam, Poom . Modified viscosity type iteration for total asymptotically nonexpansive mappings  in CAT(0) spaces and its application to optimization problems. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 288-302. doi : 10.22436/jnsa.011.02.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.10/

[1] B. Ahmadi Kakavandi Weak topologies in complete CAT(0) Metric spaces , Proc. Am. Math. Soc., Volume 141 (2013), pp. 1029-1039 | DOI | Zbl

[2] Kakavandi, B. Ahmadi; M. Amini Duality and subdifferential for convex function on complete CAT(0) metric spaces , Nonlinear Anal., Volume 73 (2010), pp. 3450-3455 | Zbl | DOI

[3] Akkasriworn, N.; Kitkuan, D.; A. Padcharoen Convergence theorems for generalized I-asymptotically nonexpansive mappings in a Hadamard spaces, Commun. Korean Math. Soc. , Volume 31 (2016), pp. 483-493 | DOI | Zbl

[4] Alber, Y. I.; Chidume, C. E.; H. Zegeye Approximating fixed points of total asymptotically nonexpansive mappings , Fixed Point Theory Appl., Volume 2006 (2006), pp. 1-20 | DOI

[5] Başarir, M.; A. Şahin On the strong and \(\Delta\)-convergence for total asymptotically nonexpansive mappings on a CAT(0) space, Carpathian Math. Publ., Volume 5 (2013), pp. 170-179 | Zbl | DOI

[6] Berg, I. D.; I. G. Nikolaev Quasilinearization and curvature of Aleksandrov spaces , Geom. Dedicata, Volume 133 (2008), pp. 195-218 | DOI | Zbl

[7] Bridson, M. R.; A. Haefliger Metric spaces of Non-positive Curvature , Springer-Verlag, Berlin, 1999 | DOI

[8] Brown, K. S. Buildings, Springer, New York, 1998 | DOI

[9] Chang, S. S.; Wang, L.; Lee, H. W. J.; C. K. Chan Strong and \(\Delta\)-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-16 | Zbl | DOI

[10] Chang, S. S.; Wang, L.; Lee, H. W. J.; Chan, C. K.; L. Yang Demiclosed principle and \(\Delta\)-convergence theorems for total asymptotically nonexpansive mapping in CAT(0) space, Appl. Math. Comput., Volume 219 (2012), pp. 2611-2617 | DOI

[11] Cho, Y. J.; Ćirić, L.; S.-H. Wang Convergence theorems for nonexpansive mappings in CAT(0) spaces , Nonlinear Anal., Volume 74 (2011), pp. 6050-6059 | DOI

[12] Cholamjiak, P.; Abdou, A. A. N.; Y. J. Cho Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces , Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13 | DOI | Zbl

[13] Dehghan, H.; Rooin, J. A Characterization of metric projection in CAT(0) spaces , Proc. Inter. Con. Func. Equation, Geo. Func. Appli., Volume 2012 (2012), pp. 1-3

[14] Dhompongsa, S.; Kirk, W. A.; Panyanak, B. Nonexpansive set-valued mappings in metric and Banach spaces , J. Nonlinear Convex Anal., Volume 8 (2007), pp. 35-45

[15] Dhompongsa, S.; Kirk, W. A.; Sims, B. Fixed points of uniformly Lipschitzian mappings , Nonlinear Anal., Volume 65 (2006), pp. 762-772 | DOI

[16] Dhompongsa, S.; B. Panyanak On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Math. Appl., Volume 56 (2008), pp. 2572-2579 | DOI

[17] Goegel, K.; W. A. Kirk A fixed point theorem for asymptotically nonexpansive mappings , Proc. Am. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI

[18] Karapınar, E.; Salahifard, H.; Vaezpour, S. M. Demiclosedness principle for total asymptoticallty nonexpansive mappings in CAT(0) spaces, J. Appl. Math., Volume 2014 (2014), pp. 1-10

[19] Kirk, W. A.; Panyanak, B. A concept of convergence in geodesic spaces , Nonlinear Anal., Volume 68 (2008), pp. 3689-3696 | DOI

[20] T. C. Lim Remarks on some fixed point theorems , Proc. Amer. Math. Soc., Volume 60 (1976), pp. 179-182 | DOI

[21] Pakkaranang, N.; P. Kumam Strong and \(\Delta\)-convergence theorems for asymptotically k-Strictly pseudo-contractive mappings in CAT(0) spaces, Commu. Math. Appl., Volume 7 (2016), pp. 189-197

[22] Pakkaranang, N.; Kumam, P.; Y. J. Cho Proximal point algorithms for solving convex minimization problem and common fixed points problem of asymptotically quasi-nonexpansive mappings in CAT(0) spaces with convergence analysis , Numer. Algor., Volume 2017 (2017), pp. 1-19 | DOI

[23] Pakkaranang, N.; Kumam, P.; Cho, Y. J.; Saipara, P.; Padcharoen, A.; Khaofong, C. Strong convergence of modified viscosity implicit approximation methods for asymptotically nonexpansive mappings in complete CAT(0) spaces , J. Math. Computer Sci., Volume 17 (2017), pp. 345-354

[24] Pakkaranang, N.; Ngiamsunthorn, P. S.; Kumam, P.; Y. J. Cho Convergence theorems of the modified S-type iterative method for (\(\alpha,\beta\))-generalized hybrid mapping in CAT(0) Spaces , J. Math. Anal., Volume 8 (2017), pp. 103-112

[25] D. R. Sahu Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces , Comment. Math. Univ. Carolin., Volume 46 (2005), pp. 653-666

[26] Saipara, P.; Chaipunya, P.; Cho, Y. J.; Kumam, P. On strong and \(\Delta\)-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT (\(\kappa\)) spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 965-975 | Zbl

[27] Sunthrayuth, P.; Cho, Y. J.; Kumam, P. Vicosity approximation methods for zeros of accretive operator and fixed point problems in Banach spaces, Bull. Malays. Math. Sci. Soc., Volume 39 (2016), pp. 773-793 | DOI

[28] Tang, J. F.; Chang, S. S.; Lee, H. W. J.; Chan, C. K. Iterative algorithm and \(\Delta\)-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces , Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-11 | Zbl

[29] Uddin, I.; Ali, J.; J. J. Nieto An iteration scheme for a family of multivalued mappings in CAT(0) spaces with an application to image recovery , RACSAM, Volume 2017 (2017 ), pp. 1-12 | DOI

[30] Uddin, I.; Nieto, J. J.; J. Ali One-step iteration scheme for multivalued nonexpansive mappings in CAT(0) spaces , Mediterr. J. Math., Volume 13 (2016), pp. 1211-1225 | Zbl | DOI

[31] L.-L. Wan \(\Delta\)-Convergence for mixed-type total asymptotically nonexpansive mappings in hyperbolic spaces, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-8 | DOI

[32] Wang, L.; Chang, S.-S.; Ma, Z. Convergence theorems for total asymptotically nonexpansive non-self mappings in CAT(0) spaces, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-10 | Zbl | DOI

[33] R.Wangkeeree; Boonkong, U.; Preechasilp, P. Viscosity approximation methods for asymptotically nonexpansive mapping in CAT(0) spaces , Fixed point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | DOI | Zbl

[34] R.Wangkeeree; Preechasilp, P. Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces , J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-15 | DOI

[35] Xu, H.-K. An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI

[36] Xu, H.-K.; Alghamdi, M. A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces , Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-12 | Zbl | DOI

[37] Yang, L.; Zhao, F. H. Strong and \(\Delta\)-convergence theorems for total asymptotically nonexpansive non-self mappings in CAT(\(\kappa\)) spaces, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-17 | DOI

[38] Zhao, L.-C.; Chang, S.-S.; J. K. Kim Mixed type iteration for total asymptotically nonexpansive mappings mappings in Hyperbolic spaces , Fixed point Theory Appl., Volume 2013 (2013 ), pp. 1-11 | DOI | Zbl

[39] Zhao, L.-C.; Chang, S.-S.; X. R.Wang Convergence theorems for total asymptotically nonexpansive mappings in Hyperbolic spaces , J. Appl. Math., Volume 2013 (2013 ), pp. 1-5

[40] Zhao, L.-C.; Chang, S.-S.; C.-F. Wen Viscosity approximation mathods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hulbert spaces , J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4478-4488

Cité par Sources :