Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 274-287.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By employing Krasnoselskii's fixed point theorem, we establish the existence of nonoscillatory solutions to a class of third-order neutral functional dynamic equations on time scales. In addition, the significance of the results is illustrated by three examples.
DOI : 10.22436/jnsa.011.02.09
Classification : 34K11, 34N05, 39A10, 39A13
Keywords: Nonoscillatory solution, neutral dynamic equation, third-order, time scale

Qiu, Yang-Cong  1 ; Wang, Haixia  2 ; Jiang, Cuimei  3 ; Li, Tongxing  4

1 School of Humanities and Social Science, Shunde Polytechnic, Foshan, Guangdong 528333, P. R. China
2 School of Economics, Ocean University of China, Qingdao, Shandong 266100, P. R. China
3 cSchool of Science, Qilu University of Technology, Jinan, Shandong 250353, P. R. China;College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
4 School of Information Science and Engineering, Linyi University, Linyi, Shandong 276005, P. R. China;School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
@article{JNSA_2018_11_2_a8,
     author = {Qiu, Yang-Cong  and Wang, Haixia  and Jiang, Cuimei  and Li, Tongxing },
     title = {Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {274-287},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/}
}
TY  - JOUR
AU  - Qiu, Yang-Cong 
AU  - Wang, Haixia 
AU  - Jiang, Cuimei 
AU  - Li, Tongxing 
TI  - Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 274
EP  - 287
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/
DO  - 10.22436/jnsa.011.02.09
LA  - en
ID  - JNSA_2018_11_2_a8
ER  - 
%0 Journal Article
%A Qiu, Yang-Cong 
%A Wang, Haixia 
%A Jiang, Cuimei 
%A Li, Tongxing 
%T Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales
%J Journal of nonlinear sciences and its applications
%D 2018
%P 274-287
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/
%R 10.22436/jnsa.011.02.09
%G en
%F JNSA_2018_11_2_a8
Qiu, Yang-Cong ; Wang, Haixia ; Jiang, Cuimei ; Li, Tongxing . Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 274-287. doi : 10.22436/jnsa.011.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/

[1] Agarwal, R. P.; Bohner, M. Basic calculus on time scales and some of its applications , Results Math., Volume 35 (1999), pp. 3-22 | DOI

[2] Agarwal, R. P.; Bohner, M.; Li, T.-X.; C.-H. Zhang Hille and Nehari type criteria for third-order delay dynamic equations, J. Difference Equ. Appl., Volume 19 (2013), pp. 1563-1579 | DOI | Zbl

[3] Agarwal, R. P.; Bohner, M.; Li, T.-X.; C.-H. Zhang A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput., Volume 249 (2014), pp. 527-531 | Zbl | DOI

[4] Agarwal, R. P.; Bohner, M.; O’Regan, D.; A. Peterson Dynamic equations on time scales: a survey, J. Comput. Appl. Math., Volume 141 (2002), pp. 1-26 | DOI | Zbl

[5] Agarwal, R. P.; Bohner, M.; Tang, S.-H.; Li, T.-X.; C.-H. Zhang Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations, Appl. Math. Comput., Volume 219 (2012), pp. 3600-3609 | DOI | Zbl

[6] Akın, E.; Hassan, T. S. Comparison criteria for third order functional dynamic equations with mixed nonlinearities, Appl. Math. Comput., Volume 268 (2015), pp. 169-185 | DOI

[7] Bohner, M.; A. Peterson Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Boston, 2001

[8] Bohner, M.; Peterson, A. Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, 2003 | DOI

[9] Y.-S. Chen Existence of nonoscillatory solutions of nth order neutral delay differential equations, Funkcial. Ekvac., Volume 35 (1992), pp. 557-570

[10] Deng, X.-H.; Wang, Q.-R. Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales , Commun. Appl. Anal., Volume 18 (2014), pp. 261-280 | Zbl

[11] Erbe, L. H.; Kong, Q.-K.; B. G. Zhang Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995

[12] Gao, J.; Q.-R. Wang Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales, Rocky Mountain J. Math., Volume 43 (2013), pp. 1521-1535 | DOI | Zbl

[13] Hassan, T. S. Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling, Volume 49 (2009), pp. 1573-1586 | DOI

[14] Hassan, T. S.; Agarwal, R. P.; W. W. Mohammed Oscillation criteria for third-order functional half-linear dynamic equations, Adv. Difference Equ., Volume 2017 (2017), pp. 1-28 | DOI

[15] S. Hilger Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Würzburg, Germany, 1988

[16] Hilger, S. Analysis on measure chains–a unified approach to continuous and discrete calculus, Results Math., Volume 18 (1990), pp. 18-56 | DOI | Zbl

[17] Li, T.-X.; Han, Z.-L.; Sun, S.-R.; D.-W. Yang Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales, Adv. Difference Equ., Volume 2009 (2009 ), pp. 1-10 | Zbl | DOI

[18] Li, T.-X.; Han, Z.-L.; Sun, S.-R.; Zhao, Y.-G. Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., Volume 34 (2011), pp. 639-648

[19] Mathsen, R. M.; Q.-R.Wang; H.-W.Wu Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl., Volume 10 (2004), pp. 651-659 | DOI

[20] Qiu, Y.-C. Nonoscillatory solutions to third-order neutral dynamic equations on time scales, Adv. Difference Equ., Volume 2014 (2014 ), pp. 1-25 | Zbl | DOI

[21] Qiu, Y.-C.; Q.-R. Wang Existence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., Volume 2016 (2016 ), pp. 1-18 | DOI

[22] Qiu, Y.-C.; Zada, A.; Qin, H.-Y.; T.-X. Li Oscillation criteria for nonlinear third-order neutral dynamic equations with damping on time scales, J. Funct. Spaces, Volume 2017 (2017 ), pp. 1-8 | Zbl | DOI

[23] Qiu, Y.-C.; Zada, A.; Tang, S.-H.; Li, T.-X. Existence of nonoscillatory solutions to nonlinear third-order neutral dynamic equations on time scales , J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 4352-4363

[24] Zhu, Z.-Q.; Q.-R. Wang Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl., Volume 335 (2007), pp. 751-762 | DOI

Cité par Sources :