Voir la notice de l'article provenant de la source International Scientific Research Publications
Qiu, Yang-Cong  1 ; Wang, Haixia  2 ; Jiang, Cuimei  3 ; Li, Tongxing  4
@article{JNSA_2018_11_2_a8, author = {Qiu, Yang-Cong and Wang, Haixia and Jiang, Cuimei and Li, Tongxing }, title = {Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales}, journal = {Journal of nonlinear sciences and its applications}, pages = {274-287}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/} }
TY - JOUR AU - Qiu, Yang-Cong AU - Wang, Haixia AU - Jiang, Cuimei AU - Li, Tongxing TI - Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 274 EP - 287 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/ DO - 10.22436/jnsa.011.02.09 LA - en ID - JNSA_2018_11_2_a8 ER -
%0 Journal Article %A Qiu, Yang-Cong %A Wang, Haixia %A Jiang, Cuimei %A Li, Tongxing %T Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales %J Journal of nonlinear sciences and its applications %D 2018 %P 274-287 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/ %R 10.22436/jnsa.011.02.09 %G en %F JNSA_2018_11_2_a8
Qiu, Yang-Cong ; Wang, Haixia ; Jiang, Cuimei ; Li, Tongxing . Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 274-287. doi : 10.22436/jnsa.011.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.09/
[1] Basic calculus on time scales and some of its applications , Results Math., Volume 35 (1999), pp. 3-22 | DOI
[2] Hille and Nehari type criteria for third-order delay dynamic equations, J. Difference Equ. Appl., Volume 19 (2013), pp. 1563-1579 | DOI | Zbl
[3] A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput., Volume 249 (2014), pp. 527-531 | Zbl | DOI
[4] Dynamic equations on time scales: a survey, J. Comput. Appl. Math., Volume 141 (2002), pp. 1-26 | DOI | Zbl
[5] Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations, Appl. Math. Comput., Volume 219 (2012), pp. 3600-3609 | DOI | Zbl
[6] Comparison criteria for third order functional dynamic equations with mixed nonlinearities, Appl. Math. Comput., Volume 268 (2015), pp. 169-185 | DOI
[7] Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Boston, 2001
[8] Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, 2003 | DOI
[9] Existence of nonoscillatory solutions of nth order neutral delay differential equations, Funkcial. Ekvac., Volume 35 (1992), pp. 557-570
[10] Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales , Commun. Appl. Anal., Volume 18 (2014), pp. 261-280 | Zbl
[11] Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995
[12] Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales, Rocky Mountain J. Math., Volume 43 (2013), pp. 1521-1535 | DOI | Zbl
[13] Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling, Volume 49 (2009), pp. 1573-1586 | DOI
[14] Oscillation criteria for third-order functional half-linear dynamic equations, Adv. Difference Equ., Volume 2017 (2017), pp. 1-28 | DOI
[15] Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Würzburg, Germany, 1988
[16] Analysis on measure chains–a unified approach to continuous and discrete calculus, Results Math., Volume 18 (1990), pp. 18-56 | DOI | Zbl
[17] Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales, Adv. Difference Equ., Volume 2009 (2009 ), pp. 1-10 | Zbl | DOI
[18] Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., Volume 34 (2011), pp. 639-648
[19] Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl., Volume 10 (2004), pp. 651-659 | DOI
[20] Nonoscillatory solutions to third-order neutral dynamic equations on time scales, Adv. Difference Equ., Volume 2014 (2014 ), pp. 1-25 | Zbl | DOI
[21] Existence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., Volume 2016 (2016 ), pp. 1-18 | DOI
[22] Oscillation criteria for nonlinear third-order neutral dynamic equations with damping on time scales, J. Funct. Spaces, Volume 2017 (2017 ), pp. 1-8 | Zbl | DOI
[23] Existence of nonoscillatory solutions to nonlinear third-order neutral dynamic equations on time scales , J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 4352-4363
[24] Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl., Volume 335 (2007), pp. 751-762 | DOI
Cité par Sources :