Voir la notice de l'article provenant de la source International Scientific Research Publications
Xie, Ya-Jun  1 ; Huang, Na  2 ; Ma, Chang-Feng 2
@article{JNSA_2018_11_2_a6, author = {Xie, Ya-Jun and Huang, Na and Ma, Chang-Feng}, title = {Two new {Newton-type} methods for the nonlinear equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {252-262}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.07/} }
TY - JOUR AU - Xie, Ya-Jun AU - Huang, Na AU - Ma, Chang-Feng TI - Two new Newton-type methods for the nonlinear equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 252 EP - 262 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.07/ DO - 10.22436/jnsa.011.02.07 LA - en ID - JNSA_2018_11_2_a6 ER -
%0 Journal Article %A Xie, Ya-Jun %A Huang, Na %A Ma, Chang-Feng %T Two new Newton-type methods for the nonlinear equations %J Journal of nonlinear sciences and its applications %D 2018 %P 252-262 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.07/ %R 10.22436/jnsa.011.02.07 %G en %F JNSA_2018_11_2_a6
Xie, Ya-Jun ; Huang, Na ; Ma, Chang-Feng. Two new Newton-type methods for the nonlinear equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 252-262. doi : 10.22436/jnsa.011.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.07/
[1] A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , Appl. Numer. Math., Volume 57 (2007), pp. 235-252 | DOI | Zbl
[2] A class of two-stage iterative methods for systems of weakly nonlinear equations, Numer. Algorithms, Volume 14 (1997), pp. 295-319 | DOI | Zbl
[3] Block and asynchronous two-stage methods for mildly nonlinear systems , Numer. Math., Volume 82 (1999), pp. 1-20 | DOI | Zbl
[4] On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., Volume 59 (2009), pp. 2923-2936 | Zbl | DOI
[5] Numerical analysis , Thomson Learning, New York, 2001
[6] Numerical methods for unconstrained optimization and nonlinear equation, Prentice Hall, New Jersey, 1983
[7] Exact traveling wave solutions for a new nonlinear heat-transfer equation , Thermal Science , Volume 21 (2016), pp. 309-315
[8] A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function , Appl. Math. Comput., Volume 230 (2014), pp. 315-329
[9] Iterative methods for linear and nonlinear equations , Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1995
[10] Solving Nonlinear Equations with Newton’s Method, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2003 | DOI
[11] Directional Halley and Quasi-Halley Methods in n Variables , Stud. Comput. Math., Amsterdam, 2001 | Zbl | DOI
[12] Testing unconstrained optimization software, ACM Trans. Math. Software, Volume 7 (1981), pp. 17-41 | DOI
[13] New two-parameter Chebyshev-Halley-like family of fourth and sixthorder methods for systems of nonlinear equations, Appl. Math. Comput., Volume 275 (2016), pp. 394-403 | DOI
[14] A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems, J. Optim. Theory Appl., Volume 149 (2011), pp. 79-101 | DOI
[15] A family of multi-pointiterative methods for solving systems of nonlinear equations, J. Comput. Appl. Math., Volume 222 (2008), pp. 244-250 | DOI
[16] New classes of iterative methods for nonlinear equations , Appl. Math. Comput., Volume 191 (2007), pp. 128-131 | DOI
[17] A Family of Iterative Schemes for Finding Zeros of Nonlinear Equations having Unknown Multiplicity, Appl. Math. Inf. Sci., Volume 8 (2014), pp. 2367-2373
[18] Higher order iterative schemes for nonlinear equations using decomposition technique, Appl. Math. Comput., Volume 266 (2015), pp. 414-423 | DOI
[19] Solving nonlinear systems of equations based on social cognitive optimization, Comput. Eng. Appl., Volume 44 (2008), pp. 42-46
[20] Iterative Methods for the Solution of Equations , Prentice Hall, Englewood, 1964
[21] Inverting modified matrices, Princeton University, Princeton, 1950
[22] A new class of methods with higher order of convergence for solving systems of nonlinear equations, Appl. Math. Comput., Volume 264 (2015), pp. 300-309 | DOI
[23] A new integral transform with an application in heat-transfer problem, Thermal Sci., Volume 20 (2016), pp. 677-681
[24] New Technology for Solving Diffusion and Heat Equations , Thermal Sci., Volume 21 (2017), pp. 133-140
Cité par Sources :