Voir la notice de l'article provenant de la source International Scientific Research Publications
Azman, I.  1 ; Jleli, M.  1 ; López, B.  2 ; Sadarangani, K.  2 ; Samet, B.  1
@article{JNSA_2018_11_2_a5, author = {Azman, I. and Jleli, M. and L\'opez, B. and Sadarangani, K. and Samet, B. }, title = {Positive solutions for a class of fractional boundary value problems with fractional boundary conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {237-251}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/} }
TY - JOUR AU - Azman, I. AU - Jleli, M. AU - López, B. AU - Sadarangani, K. AU - Samet, B. TI - Positive solutions for a class of fractional boundary value problems with fractional boundary conditions JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 237 EP - 251 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/ DO - 10.22436/jnsa.011.02.06 LA - en ID - JNSA_2018_11_2_a5 ER -
%0 Journal Article %A Azman, I. %A Jleli, M. %A López, B. %A Sadarangani, K. %A Samet, B. %T Positive solutions for a class of fractional boundary value problems with fractional boundary conditions %J Journal of nonlinear sciences and its applications %D 2018 %P 237-251 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/ %R 10.22436/jnsa.011.02.06 %G en %F JNSA_2018_11_2_a5
Azman, I. ; Jleli, M. ; López, B. ; Sadarangani, K. ; Samet, B. . Positive solutions for a class of fractional boundary value problems with fractional boundary conditions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 237-251. doi : 10.22436/jnsa.011.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/
[1] Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., Volume 62 (2011), pp. 1200-1214 | DOI
[2] Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., Volume 9 (2008), pp. 1727-1740 | DOI | Zbl
[3] Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., Volume 2009 (2009 ), pp. 1-11
[4] Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., Volume 2013 (2013), pp. 1-19 | DOI | Zbl
[5] Existence of solutions for impulsive integral boundary value problems of fractional order , Nonlinear Anal. Hybrid Syst., Volume 4 (2010), pp. 134-141 | DOI
[6] From continuous time random walks to the fractional Fokker-Planck equation , Phys. Rev. E., Volume 61 (2000), pp. 132-138 | DOI
[7] Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., Volume 228 (2014), pp. 251-257 | DOI
[8] Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., Volume 389 (2012), pp. 403-411 | DOI
[9] On monotonic solutions of an integral equation of Volterra type with supremum, J. Math. Anal. Appl., Volume 305 (2005), pp. 304-315 | DOI | Zbl
[10] Existence results for boundary value problems of nonlinear fractional differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 2374-2382 | DOI
[11] A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal., Volume 18 (1992), pp. 317-331 | DOI | Zbl
[12] Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., Volume 54 (2003), pp. 3413-3442
[13] Application of fractional calculus in the dynamical analysis and control of mechanical manipulators, Fract. Calc. Appl. Anal., Volume 11 (2008), pp. 91-113 | EuDML | Zbl
[14] Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988
[15] Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | DOI
[16] Fractional fundamental lemma of order \(\alpha\in (n - \frac{1}{2} , n)\) with \(n \in \mathbb{N}, n \geq 2\) , Dynam. Systems Appl., Volume 21 (2012), pp. 251-268
[17] Three nonnegative solutions for fractional differential equations with integral boundary conditions, Comput. Math. Appl., Volume 62 (2011), pp. 1405-1412 | Zbl | DOI
[18] Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method, Nonlinear Anal. Model. Control, Volume 20 (2015), pp. 367-376 | DOI
[19] Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006
[20] Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., Volume 59 (2010), pp. 2880-2886 | DOI
[21] Fractional calculus in Bioengineering, Crit. Rev. Biomed. Eng., Volume 32 (2004), pp. 1-104
[22] Fractional Differential Equations Mathematics in Science and Engineering, Academic Press, New York, 1999
[23] Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., Volume 5 (2002), pp. 367-386 | Zbl
[24] Weak solution to evolution problem with a nonlocal constraint, SIAM J. Math. Anal., Volume 24 (1993), pp. 46-58 | DOI
[25] Design of contact patterns in one-dimensional thermoelasticity , Theoretical Aspects of Industrial Design, Philadelphia, 1992
[26] Existence results of fractional integrodifferential equations with m-point multi-term fractional order integral boundary conditions, Bound. Value Probl., Volume 2012 (2012), pp. 1-11 | DOI
[27] Existence of solutions for multi-point nonlinear differential equations of fractional orders with integral boundary conditions, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-10 | Zbl
[28] Existence of solutions for fractional differential equations with integral boundary conditions, Adv. Difference Equ., Volume 2014 (2014 ), pp. 1-13 | DOI
[29] Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal., Volume 75 (2012), pp. 2542-2551 | Zbl | DOI
[30] The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 2086-2097 | DOI
Cité par Sources :