Positive solutions for a class of fractional boundary value problems with fractional boundary conditions
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 237-251.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the solvability of a nonlinear fractional differential equation under fractional integral boundary conditions. Via a mixed monotone operator method, some new results on the existence and uniqueness of a positive solution for the considered model are obtained. Moreover, we provide iterative sequences for approximating the solution. Some examples are also presented in order to illustrate the obtained result.
DOI : 10.22436/jnsa.011.02.06
Classification : 34A08, 31B10, 47H07
Keywords: Fractional boundary value problem, fractional integral boundary condition, mixed monotone operator

Azman, I.  1 ; Jleli, M.  1 ; López, B.  2 ; Sadarangani, K.  2 ; Samet, B.  1

1 Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
2 Department of Mathematics, rsidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain
@article{JNSA_2018_11_2_a5,
     author = {Azman, I.  and Jleli, M.  and L\'opez, B.  and Sadarangani, K.  and Samet, B. },
     title = {Positive solutions for a class of  fractional boundary value problems  with fractional boundary conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {237-251},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/}
}
TY  - JOUR
AU  - Azman, I. 
AU  - Jleli, M. 
AU  - López, B. 
AU  - Sadarangani, K. 
AU  - Samet, B. 
TI  - Positive solutions for a class of  fractional boundary value problems  with fractional boundary conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 237
EP  - 251
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/
DO  - 10.22436/jnsa.011.02.06
LA  - en
ID  - JNSA_2018_11_2_a5
ER  - 
%0 Journal Article
%A Azman, I. 
%A Jleli, M. 
%A López, B. 
%A Sadarangani, K. 
%A Samet, B. 
%T Positive solutions for a class of  fractional boundary value problems  with fractional boundary conditions
%J Journal of nonlinear sciences and its applications
%D 2018
%P 237-251
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/
%R 10.22436/jnsa.011.02.06
%G en
%F JNSA_2018_11_2_a5
Azman, I. ; Jleli, M. ; López, B. ; Sadarangani, K. ; Samet, B. . Positive solutions for a class of  fractional boundary value problems  with fractional boundary conditions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 237-251. doi : 10.22436/jnsa.011.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.06/

[1] Agarwal, R. P.; Ahmad, B. Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., Volume 62 (2011), pp. 1200-1214 | DOI

[2] Ahmad, B.; Alsaedi, A.; B. Alghamdi Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., Volume 9 (2008), pp. 1727-1740 | DOI | Zbl

[3] Ahmad, B.; Nieto, J. J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., Volume 2009 (2009 ), pp. 1-11

[4] Ahmad, B.; S. K. Ntouyas Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., Volume 2013 (2013), pp. 1-19 | DOI | Zbl

[5] Ahmad, B.; Sivasundaram, S. Existence of solutions for impulsive integral boundary value problems of fractional order , Nonlinear Anal. Hybrid Syst., Volume 4 (2010), pp. 134-141 | DOI

[6] Barkai, E.; Metzler, R.; J. Klafter From continuous time random walks to the fractional Fokker-Planck equation , Phys. Rev. E., Volume 61 (2000), pp. 132-138 | DOI

[7] Cabada, A.; Hamdi, Z. Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., Volume 228 (2014), pp. 251-257 | DOI

[8] Cabada, A.; G. Wang Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., Volume 389 (2012), pp. 403-411 | DOI

[9] Caballero, J.; L´opez, B.; K. Sadarangani On monotonic solutions of an integral equation of Volterra type with supremum, J. Math. Anal. Appl., Volume 305 (2005), pp. 304-315 | DOI | Zbl

[10] G. Chai Existence results for boundary value problems of nonlinear fractional differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 2374-2382 | DOI

[11] Choi, Y. S.; Chan, K.-Y. A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal., Volume 18 (1992), pp. 317-331 | DOI | Zbl

[12] L. Debnath Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., Volume 54 (2003), pp. 3413-3442

[13] Ferreira, N. M. Fonseca; Duarte, F. B.; Lima, M. F. M.; Marcos, M. G.; Tenreiro, J. A. Machado Application of fractional calculus in the dynamical analysis and control of mechanical manipulators, Fract. Calc. Appl. Anal., Volume 11 (2008), pp. 91-113 | EuDML | Zbl

[14] Guo, D. J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988

[15] Hilfer, R. Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | DOI

[16] Idczak, D.; M. Majewski Fractional fundamental lemma of order \(\alpha\in (n - \frac{1}{2} , n)\) with \(n \in \mathbb{N}, n \geq 2\) , Dynam. Systems Appl., Volume 21 (2012), pp. 251-268

[17] Jia, M.; X. Liu Three nonnegative solutions for fractional differential equations with integral boundary conditions, Comput. Math. Appl., Volume 62 (2011), pp. 1405-1412 | Zbl | DOI

[18] Jleli, M.; B. Samet Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method, Nonlinear Anal. Model. Control, Volume 20 (2015), pp. 367-376 | DOI

[19] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006

[20] Liu, X.; Jia, M. Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., Volume 59 (2010), pp. 2880-2886 | DOI

[21] R. Magin Fractional calculus in Bioengineering, Crit. Rev. Biomed. Eng., Volume 32 (2004), pp. 1-104

[22] Podlubny, I. Fractional Differential Equations Mathematics in Science and Engineering, Academic Press, New York, 1999

[23] Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., Volume 5 (2002), pp. 367-386 | Zbl

[24] P. Shi Weak solution to evolution problem with a nonlocal constraint, SIAM J. Math. Anal., Volume 24 (1993), pp. 46-58 | DOI

[25] Shi, P.; Shillor, M. Design of contact patterns in one-dimensional thermoelasticity , Theoretical Aspects of Industrial Design, Philadelphia, 1992

[26] Sudsutad, W.; Tariboon, J. Existence results of fractional integrodifferential equations with m-point multi-term fractional order integral boundary conditions, Bound. Value Probl., Volume 2012 (2012), pp. 1-11 | DOI

[27] Wang, G.; Liu, W.; Ren, C. Existence of solutions for multi-point nonlinear differential equations of fractional orders with integral boundary conditions, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-10 | Zbl

[28] Yan, R.; Sun, S.; Lu, H.; Zhao, Y. Existence of solutions for fractional differential equations with integral boundary conditions, Adv. Difference Equ., Volume 2014 (2014 ), pp. 1-13 | DOI

[29] Zhai, C.; Hao, M. Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal., Volume 75 (2012), pp. 2542-2551 | Zbl | DOI

[30] Zhao, Y.; Sun, S.; Han, Z.; Q. Li The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 2086-2097 | DOI

Cité par Sources :