Integral transforms and partial sums of certain meromorphically $p$-valent starlike functions
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 228-236.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce two new subclasses of meromorphically $p$-valent starlike functions. Inclusion relation, integral transforms, and partial sums for each of these classes are discussed.
DOI : 10.22436/jnsa.011.02.05
Classification : 30C45, 30C80
Keywords: Analytic function, meromorphic function, \(p\)-valent function, starlike function, subordination, inclusion relation, integral transforms, partial sum

Liu, Yong-Jie  1 ; Liu, Jin-Lin 1

1 Department of Mathematics, Yangzhou University, Yangzhou 225002, China
@article{JNSA_2018_11_2_a4,
     author = {Liu, Yong-Jie  and  Liu, Jin-Lin},
     title = {Integral transforms and partial sums of certain meromorphically \(p\)-valent starlike functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {228-236},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.05/}
}
TY  - JOUR
AU  - Liu, Yong-Jie 
AU  -  Liu, Jin-Lin
TI  - Integral transforms and partial sums of certain meromorphically \(p\)-valent starlike functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 228
EP  - 236
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.05/
DO  - 10.22436/jnsa.011.02.05
LA  - en
ID  - JNSA_2018_11_2_a4
ER  - 
%0 Journal Article
%A Liu, Yong-Jie 
%A  Liu, Jin-Lin
%T Integral transforms and partial sums of certain meromorphically \(p\)-valent starlike functions
%J Journal of nonlinear sciences and its applications
%D 2018
%P 228-236
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.05/
%R 10.22436/jnsa.011.02.05
%G en
%F JNSA_2018_11_2_a4
Liu, Yong-Jie ;  Liu, Jin-Lin. Integral transforms and partial sums of certain meromorphically \(p\)-valent starlike functions. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 228-236. doi : 10.22436/jnsa.011.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.05/

[1] Aouf, M. K.; Dziok, J.; J. Sokół On a subclass of strongly starlike functions, Appl. Math. Lett., Volume 24 (2011), pp. 27-32 | DOI

[2] Cho, N. E.; Kwon, O. S.; S. Owa Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math., Volume 17 (1993), pp. 121-126

[3] Cho, N. E.; Lee, H. J.; Park, J. H.; Srivastava, R. Some applications of the first-order differential subordinations, Filomat, Volume 30 (2016), pp. 1465-1474 | DOI | Zbl

[4] Devi, S.; Srivastava, H. M.; A. Swaminathan Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., Volume 24 (2016), pp. 139-168 | DOI

[5] J. Dziok Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012), pp. 765-774 | Zbl | DOI

[6] J. Dziok Classes of multivalent analytic and meromorphic functions with two fixed points, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-18 | DOI | Zbl

[7] Dziok, J.; Raina, R. K.; Sokół, J. On alpha-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., Volume 218 (2011), pp. 996-1002 | DOI | Zbl

[8] Dziok, J.; J. Sokół Some inclusion properties of certain class of analytic functions, Taiwanese J. Math., Volume 13 (2009), pp. 2001-2009 | DOI

[9] S. A. Halim Functions starlike with respect to other points, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 451-456

[10] Kwon, O. S.; Sim, Y. J.; Cho, N. E.; H. M. Srivastava Some radius problems related to a certain subclass of analytic functions, Acta Math. Sin., Volume 30 (2014), pp. 1133-1144 | Zbl | DOI

[11] Liu, J.-L.; Srivastava, H. M.; Yuan, Y. A family of meromorphically functions which are starlike with respect to k-symmetric points, J. Math. Inequal., Volume 11 (2017), pp. 781-798 | Zbl | DOI

[12] Mishra, A. K.; Panigrahi, T.; R. K. Mishra Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking , Math. Comput. Modelling, Volume 57 (2013), pp. 945-962 | DOI | Zbl

[13] Pavatham, R.; Radha, S. On \(\alpha\)-starlike and \(\alpha\)-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math., Volume 17 (1986), pp. 1114-1122 | Zbl

[14] Peng, Z.-G.; Q.-Q Han On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., Volume 34 (2014), pp. 228-240 | DOI

[15] J. Sokół A certain class of starlike functions, Comput. Math. Appl., Volume 62 (2011), pp. 611-619 | DOI

[16] Srivastava, H. M.; Alhindi, K. R.; Darus, M. An investigation into the polylogarithm function and its associated class of meromorphic functions, Maejo Internat. J. Sci. Tech., Volume 10 (2016), pp. 166-174

[17] Srivastava, H. M.; El-Ashwah, R. M.; Breaz, N. A certain subclass of multivalent functions involving higher-order derivatives, Filomat, Volume 30 (2016), pp. 113-124 | Zbl | DOI

[18] Srivastava, H. M.; Joshi, S. B.; Joshi, S.; Pawar, H. Coefficient estimates for certain subclasses of meromorphically biunivalent functions, Palest. J. Math., Volume 5 (2016), pp. 250-258 | Zbl

[19] Srivastava, H. M.; Yang, D.-G.; N.-E. Xu Some subclasses of meromorphically multivalent functions associated with a linear operator , Appl. Math. Comput., Volume 195 (2008), pp. 11-23 | DOI

[20] Wang, Z.-G.; Gao, C.-Y.; S.-M. Yuan On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl., Volume 322 (2006), pp. 97-106 | Zbl | DOI

[21] Xu, N.-E.; D.-G. Yang Some classes of analytic and multivalent functions involving a linear operator , Math. Comput. Modelling, Volume 49 (2009), pp. 955-965 | DOI

[22] Yang, D.-G.; Liu, J.-L. On functions starlike with respect to k-symmetric points, Houston J. Math., Volume 41 (2015), pp. 445-470 | Zbl

Cité par Sources :