Voir la notice de l'article provenant de la source International Scientific Research Publications
Alolaiyan, Hanan  1 ; Saleem, Naeem  2 ; Abbas, Mujahid  3
@article{JNSA_2018_11_2_a3, author = {Alolaiyan, Hanan and Saleem, Naeem and Abbas, Mujahid }, title = {A natural selection of a graphic contraction transformation in fuzzy metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {218-227}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.04/} }
TY - JOUR AU - Alolaiyan, Hanan AU - Saleem, Naeem AU - Abbas, Mujahid TI - A natural selection of a graphic contraction transformation in fuzzy metric spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 218 EP - 227 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.04/ DO - 10.22436/jnsa.011.02.04 LA - en ID - JNSA_2018_11_2_a3 ER -
%0 Journal Article %A Alolaiyan, Hanan %A Saleem, Naeem %A Abbas, Mujahid %T A natural selection of a graphic contraction transformation in fuzzy metric spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 218-227 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.04/ %R 10.22436/jnsa.011.02.04 %G en %F JNSA_2018_11_2_a3
Alolaiyan, Hanan ; Saleem, Naeem ; Abbas, Mujahid . A natural selection of a graphic contraction transformation in fuzzy metric spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 218-227. doi : 10.22436/jnsa.011.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.04/
[1] Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-8 | DOI | Zbl
[2] Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1520-1526 | DOI
[3] Fixed point theorems for two new classes of multivalued mappings , Appl. Math. Lett., Volume 22 (2009), pp. 1364-1368 | Zbl | DOI
[4] Coincidence points of mappings and relations with applications , Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-9 | DOI | Zbl
[5] On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399 | DOI
[6] On some results of analysis for fuzzy metric spaces , Fuzzy Sets and Systems, Volume 90 (1997), pp. 365-368 | DOI
[7] Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389 | DOI
[8] Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, Volume 115 (2000), pp. 485-489 | DOI
[9] On fixed-point theorems in fuzzy metric spaces , Fuzzy Sets and Systems, Volume 125 (2002), pp. 245-252 | DOI
[10] IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., Volume 356 (2009), pp. 453-463 | Zbl | DOI
[11] Alexandroff theorem in fuzzy metric spaces, Math. Sci. Res. J., Volume 8 (2004), pp. 357-361 | Zbl
[12] The contraction principle for mappings on a metric space with a graph , Proc., Amer. Math. Soc., Volume 136 (2008), pp. 1359-1373
[13] Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ., Volume 77 (2007), pp. 123-146 | Zbl | DOI
[14] Fuzzy metric and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 336-344
[15] Fixed point theorems in ordered abstract spaces , Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2505-2517 | DOI
[16] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443 | Zbl | DOI
[17] The Hausdorff fuzzy metric on compact sets , Fuzzy Sets and Systems, Volume 147 (2004), pp. 273-283 | DOI
[18] Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications , Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[19] Statistical metric spaces , Pacific J. Math., Volume 10 (1960), pp. 314-334
[20] Fuzzy Sets, Informations and control, Volume 8 (1965), pp. 338-353
Cité par Sources :