Voir la notice de l'article provenant de la source International Scientific Research Publications
Song, Yanlai  1
@article{JNSA_2018_11_2_a2, author = {Song, Yanlai }, title = {Iterative methods for fixed point problems and generalized split feasibility problems in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {198-217}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.03/} }
TY - JOUR AU - Song, Yanlai TI - Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 198 EP - 217 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.03/ DO - 10.22436/jnsa.011.02.03 LA - en ID - JNSA_2018_11_2_a2 ER -
%0 Journal Article %A Song, Yanlai %T Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 198-217 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.03/ %R 10.22436/jnsa.011.02.03 %G en %F JNSA_2018_11_2_a2
Song, Yanlai . Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 198-217. doi : 10.22436/jnsa.011.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.03/
[1] Weak convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Nonlinear Convex Anal., Volume 10 (2016), pp. 2159-2169 | Zbl
[2] Existence of fixed points of firmly nonexpansive-like mappings in Banach spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15 | Zbl | DOI
[3] Strong convergence theorems for a family of mappings of type (P) and applications, Nonlinear Anal. Optim., Volume 2009 (2009), pp. 1-17
[4] Three generalizations of firmly nonexpansive mappings: their relations and continuous properties, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 131-147
[5] Nonlinear maximal monotone operators in Banach spaces, Math. Ann., Volume 175 (1968), pp. 89-113 | DOI
[6] Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., Volume 18 (2002), pp. 441-453 | Zbl | DOI
[7] A multiprojection algorithm using Bregman projections in a product space , Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[8] The split common fixed point problem for directed operators , J. Convex Anal., Volume 16 (2009), pp. 587-600
[9] On a class of split equality fixed point problems in Hilbert spaces, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 201-212
[10] Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math., Volume 234 (2010), pp. 861-882 | Zbl | DOI
[11] Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., Volume 8 (2018), pp. 19-31
[12] Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces , Nonlinear Anal., Volume 75 (2012), pp. 2166-2176 | DOI | Zbl
[13] Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., Volume 14 (2010), pp. 2497-2511 | DOI
[14] Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 325 (2007), pp. 469-479 | DOI
[15] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI
[16] Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2004 (2004), pp. 1-10 | DOI
[17] Strong convergence theorems for generalized nonexpansive mappings on star-shaped set with applications , Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-24 | DOI | Zbl
[18] Projection splitting algorithm for nonself operator, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 925-935
[19] Characterization of the subdifferentials of convex functions, Pacific J. Math., Volume 17 (1966), pp. 497-510
[20] On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88 | DOI
[21] Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | Zbl
[22] An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces , Numer. Algorithms, Volume 72 (2016), pp. 835-864 | Zbl | DOI
[23] Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000
[24] Nonlinear Functional Analysis, Yokohama Publ., Yokohama, 2000
[25] The split common null point problem and the shrinking projection method in Banach spaces, Optimization, Volume 65 (2016), pp. 281-287 | DOI
[26] Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., Volume 147 (2010), pp. 27-41 | DOI
[27] Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13 | DOI | Zbl
[28] Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308 | DOI
[29] Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI
[30] Weak and strong convergence theorems for an asymptotically k-strict pseudo-contraction and a mixed equilibrium problem, J. Korean Math. Soc., Volume 46 (2009), pp. 561-576 | DOI | Zbl
[31] Mathematical programming with multiple sets split monotone variational inclusion constraints, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-27 | DOI | Zbl
Cité par Sources :