Characterizations of geodesic sub-$b$-$s$-convex functions on Riemannian manifolds
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 189-197.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we present the notion of geodesic sub-$b$-$s$-convex function on the Riemannian manifolds. A non-trivial example of geodesic sub-$b$-$s$-convex function but not geodesic convex function is also discussed. Some fundamental properties of geodesic sub-$b$-$s$-convex functions are investigated. Moreover, we derive the optimality conditions of unconstrained and constrained programming problems under the sub-$b$-$s$-convexity.
DOI : 10.22436/jnsa.011.02.02
Classification : 26A51, 53C22, 58B20, 90C46
Keywords: Geodesic convex set, geodesic sub-\(b\)-\(s\)-convex function, optimality conditions, Riemannian manifolds

Ahmad, Izhar  1 ; Jayswal, Anurag  2 ; Kumari, Babli  2

1 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2 Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
@article{JNSA_2018_11_2_a1,
     author = {Ahmad, Izhar  and Jayswal, Anurag  and Kumari, Babli },
     title = {Characterizations of geodesic sub-\(b\)-\(s\)-convex functions on {Riemannian} manifolds},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {189-197},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     doi = {10.22436/jnsa.011.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.02/}
}
TY  - JOUR
AU  - Ahmad, Izhar 
AU  - Jayswal, Anurag 
AU  - Kumari, Babli 
TI  - Characterizations of geodesic sub-\(b\)-\(s\)-convex functions on Riemannian manifolds
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 189
EP  - 197
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.02/
DO  - 10.22436/jnsa.011.02.02
LA  - en
ID  - JNSA_2018_11_2_a1
ER  - 
%0 Journal Article
%A Ahmad, Izhar 
%A Jayswal, Anurag 
%A Kumari, Babli 
%T Characterizations of geodesic sub-\(b\)-\(s\)-convex functions on Riemannian manifolds
%J Journal of nonlinear sciences and its applications
%D 2018
%P 189-197
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.02/
%R 10.22436/jnsa.011.02.02
%G en
%F JNSA_2018_11_2_a1
Ahmad, Izhar ; Jayswal, Anurag ; Kumari, Babli . Characterizations of geodesic sub-\(b\)-\(s\)-convex functions on Riemannian manifolds. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 189-197. doi : 10.22436/jnsa.011.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.02/

[1] Agarwal, R. P.; Ahmad, I.; Iqbal, A.; Ali, S. Generalized invex sets and preinvex functions on Riemannian manifolds , Taiwanese J. Math., Volume 16 (2012), pp. 1719-1732 | DOI | Zbl

[2] Ahmad, I.; Iqbal, A.; S. Ali On properties of geodesic \(\eta\)-preinvex functions, Adv. Oper. Res., Volume 2009 (2009), pp. 1-10

[3] Antczak, T. r-preinvexity and r-invexity in mathematical programming , Comput. Math. Appl., Volume 50 (2005), pp. 551-566 | DOI | Zbl

[4] Barani, A.; Pouryayevali, M. R. Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl., Volume 328 (2007), pp. 767-779 | DOI

[5] Chao, M. T.; Jian, J. B.; D. Y. Liang Sub-b-convex functions and sub-b-convex programming, Oper. Res. Trans., Volume 16 (2012), pp. 1-8

[6] Hanson, M. A. On sufficiency of the Kuhn-Tucker conditions , J. Math. Anal. Appl., Volume 80 (1981), pp. 545-550 | DOI

[7] Hudzik, H.; Maligranda, L. Some remarks on s-convex functions , Aequationes Math., Volume 48 (1994), pp. 100-111 | DOI | Zbl

[8] Iqbal, A.; Ahmad, I.; Ali, S. Strong geodesic \(\alpha\)-preinvexity and invariant \(\alpha\)-monotonicity on Riemannian manifolds, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 1342-1361 | Zbl | DOI

[9] Iqbal, A.; Ahmad, I.; S. Ali Some properties of geodesic semi-E-convex functions, Nonlinear Anal., Volume 74 (2011), pp. 6805-6813 | Zbl | DOI

[10] Iqbal, A.; Ali, S.; Ahmad, I. On geodesic E-convex sets, geodesic E-convex functions and E-epigraph, J. Optim. Theory Appl., Volume 155 (2012), pp. 239-251 | DOI | Zbl

[11] Kılıçman, A.; Saleh, W. On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl., Volume 2015 (2015 ), pp. 1-10 | Zbl | DOI

[12] T. Rapcsák Geodesic convexity in nonlinear optimization , J. Optim. Theory Appl., Volume 69 (1991), pp. 169-183 | DOI

[13] C. Udrişte Convex functions and optimization methods on Riemannian manifolds, Kluwer Academic Publishers, Dordrecht, 1994 | DOI

[14] Youness, E. A. On E-convex sets, E-convex functions and E-convex programming , J. Optim. Theory Appl., Volume 102 (1999), pp. 439-450 | DOI

[15] Zhou, L.-W.; N.-J. Huang Roughly geodesic B-invex and optimization problem on Hadamard manifolds, Taiwanese J. Math., Volume 17 (2013), pp. 833-855 | Zbl | DOI

Cité par Sources :