Voir la notice de l'article provenant de la source International Scientific Research Publications
Song, Yueqiang  1 ; Shi, Shaoyun  2
@article{JNSA_2018_11_2_a0, author = {Song, Yueqiang and Shi, Shaoyun }, title = {Solutions of {\(p\)-Kirchhoff} type problems with critical nonlinearity in {\(\mathbb{R}^N\)}}, journal = {Journal of nonlinear sciences and its applications}, pages = {172-188}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, doi = {10.22436/jnsa.011.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.01/} }
TY - JOUR AU - Song, Yueqiang AU - Shi, Shaoyun TI - Solutions of \(p\)-Kirchhoff type problems with critical nonlinearity in \(\mathbb{R}^N\) JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 172 EP - 188 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.01/ DO - 10.22436/jnsa.011.02.01 LA - en ID - JNSA_2018_11_2_a0 ER -
%0 Journal Article %A Song, Yueqiang %A Shi, Shaoyun %T Solutions of \(p\)-Kirchhoff type problems with critical nonlinearity in \(\mathbb{R}^N\) %J Journal of nonlinear sciences and its applications %D 2018 %P 172-188 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.01/ %R 10.22436/jnsa.011.02.01 %G en %F JNSA_2018_11_2_a0
Song, Yueqiang ; Shi, Shaoyun . Solutions of \(p\)-Kirchhoff type problems with critical nonlinearity in \(\mathbb{R}^N\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 2, p. 172-188. doi : 10.22436/jnsa.011.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.02.01/
[1] Lévy processes–from probability to finance and quantum groups , Notices Amer. Math. Soc., Volume 51 (2004), pp. 1336-1347 | Zbl
[2] Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity , Nonlinear Anal., Volume 125 (2015), pp. 699-714 | DOI | Zbl
[3] Elliptic problems involving the fractional Laplacian in \(R^N\) , J. Differential Equations, Volume 255 (2013), pp. 2340-2362 | DOI
[4] On some critical problems for the fractional Laplacian operator, J. Differential Equations, Volume 252 (2012), pp. 6133-6162 | DOI
[5] On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., Volume 274 (1982), pp. 533-572 | DOI | Zbl
[6] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents , Comm. Pure Appl. Math., Volume 34 (1983), pp. 437-477 | DOI
[7] Nonlinear partial differential equations, Abel Symp. , Springer, Heidelberg, Volume 7 (2012), pp. 37-52
[8] Ground state solutions of asymptotically linear fractional Schrödinger equations , J. Math. Phys., Volume 54 (2013), pp. 1-10 | Zbl | DOI
[9] On a class of nonhomogeneous fractional quasilinear equations in \(R^n\) with exponential growth , NoDEA Nonlinear Differential Equations Appl., Volume 22 (2015), pp. 499-511 | DOI | Zbl
[10] Hitchhiker’s guide to the fractional Sobolev spaces , Bull. Sci. Math., Volume 136 (2012), pp. 521-573 | DOI | Zbl
[11] Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations, Volume 30 (2007), pp. 231-249 | DOI
[12] Infinitely many weak solutions for a fractional Schrödinger equation, Bound. Value Probl., Volume 2014 (2014), pp. 1-14 | DOI | Zbl
[13] Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti- Rabinowitz condition, Appl. Math. Comput., Volume 257 (2015), pp. 409-416 | Zbl | DOI
[14] Existence results for fractional p-Laplacian problems via Morse theory , Adv. Calc. Var., Volume 9 (2016), pp. 101-125 | DOI | Zbl
[15] Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, Volume 268 (2000), pp. 298-305 | DOI
[16] Fractional Schrödinger equation , Phys. Rev. E, Volume 66 (2002), pp. 1-7 | DOI
[17] Soliton solutions to Kirchhoff type problems involving the critical growth in \(R^N\), Nonlinear Anal., Volume 81 (2013), pp. 31-41 | DOI | Zbl
[18] Existence of solutions for Kirchhoff type problems with critical nonlinearity in \(R^3\) , Nonlinear Anal. Real World Appl., Volume 17 (2014), pp. 126-136 | DOI
[19] Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type with critical growth in \(R^N\), J. Math. Phys., Volume 57 (2016), pp. 1-13 | Zbl | DOI
[20] Multiplicity of solutions for the noncooperative Schrödinger-Kirchhoff system involving the fractional p-Laplacian in \(R^N\) , Z. Angew. Math. Phys., Volume 68 (2017), pp. 1-18 | Zbl | DOI
[21] The concentration-compactness principle in the calculus of variations, The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984), pp. 223-283 | DOI | Zbl
[22] Positive solutions for Kirchhoff-type equations with critical exponent in \(R^N\), J. Math. Anal. Appl., Volume 429 (2015), pp. 1153-1172 | DOI
[23] Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 2985-3008 | Zbl | DOI
[24] Multiplicity results for elliptic fractional equations with subcritical term , NoDEA Nonlinear Differential Equations Appl., Volume 22 (2015), pp. 721-739 | DOI | Zbl
[25] Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., Volume 420 (2014), pp. 167-176 | DOI
[26] On a p-Kirchhoff problem involving a critical nonlinearity , C. R. Math. Acad. Sci. Paris, Volume 352 (2014), pp. 295-298 | DOI | Zbl
[27] Critical stationary Kirchhoff equations in \(R^N\) involving nonlocal operators , Rev. Mat. Iberoam., Volume 32 (2016), pp. 1-22 | DOI | Zbl
[28] Multiple solutions for nonhomogeneous Schrödinger -Kirchhoff type equations involving the fractional p-Laplacian in \(R^N\), Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 2785-2806 | DOI | Zbl
[29] Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., Volume 5 (2016), pp. 27-55 | DOI | Zbl
[30] Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986 | DOI
[31] Nonexistence results for nonlocal equations with critical and supercritical nonlinearities , Comm. Partial Differential Equations, Volume 40 (2015), pp. 115-133 | Zbl | DOI
[32] Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., Volume 28 (2015), pp. 655-676 | DOI
[33] The Brezis-Nirenberg result for the fractional Laplacian , Trans. Amer. Math. Soc., Volume 367 (2015), pp. 67-102 | DOI
[34] Concentrating solutions of nonlinear fractional Schrdinger equation with potentials, J. Differential Equations, Volume 258 (2015), pp. 1106-1128 | DOI
[35] Multiple solutions for a class of fractional Schrdinger equations in \(R^N\), Nonlinear Anal. Real World Appl., Volume 21 (2015), pp. 76-86 | DOI
[36] On superlinear fractional p-Laplacian in \(R^n\), ArXiv, Volume 2014 (2014), pp. 1-12
[37] Minimax theorems , Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1996
[38] Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian , J. Math. Anal. Appl., Volume 424 (2015), pp. 1021-1041 | DOI | Zbl
[39] Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. A, Volume 471 (2015), pp. 1-14 | Zbl | DOI
[40] Existence of solutions for perturbed fractional p-Laplacian equations , J. Differential Equations, Volume 260 (2016), pp. 1392-1413 | Zbl | DOI
[41] A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in \(R^N\), Adv. Nonlinear Stud., Volume 17 (2017), pp. 611-640 | DOI | Zbl
[42] Ground states for fractional Schrödinger equations involving a critical nonlinearity , Adv. Nonlinear Anal., Volume 5 (2016), pp. 293-314 | DOI | Zbl
Cité par Sources :