Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 150-160.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we present the best possible parameters $\alpha_i, \beta_i\ (i=1,2,3)$ and $\alpha_4,\beta_4\in(1/2,1)$ such that the double inequalities
$\alpha_1Q(a,b)+(1-\alpha_1)C(a,b) $
$\qquad\ Q^{\alpha_2}(a,b)C^{1-\alpha_2}(a,b) $
$\frac{Q(a,b)C(a,b)}{\alpha_3Q(a,b)+(1-\alpha_3)C(a,b)} $
$C\left(\sqrt{\alpha_4a^2+(1-\alpha_4)b^2},\sqrt{(1-\alpha_4)a^2+\alpha_4b^2}\right) $
hold for all $a, b>0$ with $a\neq b$, where $Q(a,b)$, $C(a,b)$, and $T(a,b)$ are the quadratic, contraharmonic, and Toader means, respectively, and $T_{Q,C}(a,b)=T[Q(a,b),C(a,b)]$. As consequences, we provide new bounds for the complete elliptic integral of the second kind.
DOI : 10.22436/jnsa.011.01.11
Classification : 26E60, 33E05
Keywords: Toader mean, elliptic integral, quadratic mean, contraharmonic mean

Ji, Zhengchao  1 ; Ding, Qing  2 ; Zhao, Tiehong  3

1 Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
2 College of Mathematics and Statistics, Hunan University of Finance and Economics, Changsha 410205, China
3 Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China
@article{JNSA_2018_11_1_a10,
     author = {Ji, Zhengchao  and Ding, Qing  and Zhao, Tiehong },
     title = {Optimal inequalities for a {Toader-type} mean by quadratic and contraharmonic means},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {150-160},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/}
}
TY  - JOUR
AU  - Ji, Zhengchao 
AU  - Ding, Qing 
AU  - Zhao, Tiehong 
TI  - Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 150
EP  - 160
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/
DO  - 10.22436/jnsa.011.01.11
LA  - en
ID  - JNSA_2018_11_1_a10
ER  - 
%0 Journal Article
%A Ji, Zhengchao 
%A Ding, Qing 
%A Zhao, Tiehong 
%T Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means
%J Journal of nonlinear sciences and its applications
%D 2018
%P 150-160
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/
%R 10.22436/jnsa.011.01.11
%G en
%F JNSA_2018_11_1_a10
Ji, Zhengchao ; Ding, Qing ; Zhao, Tiehong . Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 150-160. doi : 10.22436/jnsa.011.01.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/

[1] Alzer, H.; Qiu, S.-L. Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., Volume 172 (2004), pp. 289-312 | DOI | Zbl

[2] Anderson, G. D.; Vamanamurthy, M. K.; M. K. Vuorinen Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997

[3] Barnard, R. W.; Pearce, K.; Richards, K. C. An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., Volume 31 (2000), pp. 693-699 | DOI | Zbl

[4] Borwein, J. M.; Borwein, P. B. Pi and the AGM, John Wiley & Sons, NewYork, 1987

[5] Chu, Y.-M.; S.-W. Hou Sharp bounds for Seiffert mean in terms of contraharmonic mean, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-6 | Zbl

[6] Chu, Y.-M.; Hou, S. W.; Xia, W.-F. Optimal convex combinations bounds of centroidal and harmonic means for logarithmic and identric means,, Bull. Iranian Math. Soc., Volume 39 (2013), pp. 259-269 | Zbl

[7] Chu, Y.-M.; Long, B.-Y. Bounds of the Neuman-Sándor mean using power and identic means, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6

[8] Chu, H.-H.; Qian, W.-M.; Chu, Y.-M.; Song, Y.-Q. Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3424-3432 | Zbl

[9] Chu, Y.-M.; Qiu, Y.-F.; M.-K. Wang Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-12 | Zbl

[10] Chu, Y.-M.; Wang, M.-K. Inequalities between arithmetic-geometric, Gini, and Toader means , Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-11 | Zbl

[11] Chu, Y.-M.; M.-K. Wang Optimal Lehmer mean bounds for the Toader mean , Results Math., Volume 61 (2012), pp. 223-229 | DOI | Zbl

[12] Chu, Y.-M.; Wang, M.-K.; Jiang, Y.-P.; Qiu, S.-L. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., Volume 395 (2012), pp. 637-642 | Zbl | DOI

[13] Chu, Y.-M.; Wang, M.-K.; Ma, X.-Y. Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal., Volume 7 (2013), pp. 161-166 | DOI | Zbl

[14] Chu, Y.-M.; Wang, M.-K.; S.-L. Qiu Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., Volume 122 (2012), pp. 41-51 | Zbl | DOI

[15] Chu, Y.-M.; Wang, M.-K.; Qiu, S.-L.; Jiang, Y.-P. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., Volume 63 (2012), pp. 1177-1184 | DOI

[16] Chu, Y.-M.; Wang, M.-K.; Qiu, S.-L.; Qiu, Y.-F. Sharp generalized Seiffert mean bounds for Toader mean, Abstr. Appl. Anal., Volume 2011 (2011 ), pp. 1-8 | Zbl

[17] Chu, Y.-M.; Xia, W.-F. Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., Volume 2009 (2009 ), pp. 1-6 | DOI | Zbl

[18] Chu, Y.-M.; W.-F. Xia Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., Volume 60 (2010), pp. 83-89 | DOI | Zbl

[19] Guo, Z.-J.; Zhang, Y.; Chu, Y.-M.; Song, Y.-Q. Sharp bounds for Neuman means in terms of geometric, arithmetic and quadratic means, J. Math. Inequal., Volume 10 (2016), pp. 301-312 | Zbl | DOI

[20] Kazi, H.; Neuman, E.; Inequalities and bounds for elliptic integrals , J. Approx. Theory, Volume 146 (2007), pp. 212-226 | DOI

[21] Kazi, H.; E. Neuman Inequalities and bounds for elliptic integrals II, Amer. Math. Soc., Volume 471 (2008), pp. 127-138 | DOI

[22] Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds by the power mean for the generalized Heronian mean, J. Inequal. Appl., Volume 2012 (2012 ), pp. 1-9 | Zbl | DOI

[23] Li, N.; Zhao, T.; Y. Zhao Bounds for a Toader-type mean by arithmetic and contraharmonic means, Int. J. Pure Appl. Math., Volume 105 (2015), pp. 257-268

[24] E. Neuman Bounds for symmetric elliptic integrals, J. Approx. Theory, Volume 122 (2003), pp. 249-259 | DOI

[25] Qian, W.-M.; Chu, Y.-M. Sharp bounds for a special quasi- arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., Volume 2017 (2017), pp. 1-10 | Zbl | DOI

[26] Qiu, S. L.; Shen, J. M. On two problems concerning means, J. Hangzhou Inst. Electron. Eng., Volume 17 (1997), pp. 1-7

[27] Qiu, Y.-F.; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., Volume 5 (2011), pp. 301-306 | DOI | Zbl

[28] Toader, G. H. Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl., Volume 218 (1998), pp. 358-368 | DOI

[29] Vuorinen, M. Hypergeometric functions in geometric function theory , Special Functions and Differential Equations, 119–126, 1998

[30] Wang, M.-K.; Y.-M. Chu Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl., Volume 402 (2013), pp. 119-126 | Zbl | DOI

[31] Wang, M.-K.; Chu, Y.-M. Refinenemts of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., Volume 37 (2017), pp. 607-622 | DOI

[32] Wang, M.-K.; Chu, Y.-M.; Qiu, Y.-F.; S.-L. Qiu An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., Volume 24 (2011), pp. 887-890 | Zbl | DOI

[33] Wang, M.-K.; Li, Y.-M.; Chu, Y.-M. Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., Volume 2017 (2017 ), pp. 1-12 | DOI

[34] Wang, M.-K.; Qiu, Y.-F.; Chu, Y.-M. Sharp bounds for Seiffert means in terms of Lehmer means, J. Math. Inequal., Volume 4 (2010), pp. 581-586 | Zbl | DOI

[35] Wang, G.-D.; Zhang, X.-H.; Y.-M. Chu A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., Volume 14 (2011), pp. 833-837 | DOI | Zbl

[36] Xia, W.-F.; Chu, Y.-M. Optimal inequalities between Neuman- Sándor, centroidal and harmonic means, J. Math. Inequal., Volume 7 (2013), pp. 593-600 | DOI | Zbl

[37] Xia, W.-F.; Chu, Y.-M.; Wang, G.-D. The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-9 | Zbl

[38] Xia, W.-F.; Janous, W.; Chu, Y.-M. The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean, J. Math. Inequal., Volume 6 (2012), pp. 241-248 | DOI | Zbl

[39] Yang, Z.-H.; Chu, Y.-M. A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017), pp. 729-735 | DOI | Zbl

[40] Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; W. Zhang Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-13 | DOI | Zbl

[41] Zhao, T.-H.; Chu, Y.-M.; W. Zhang Optimal inequalities for bounding Toader mean by arithmetic and quadratic means, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-10 | DOI | Zbl

Cité par Sources :