Voir la notice de l'article provenant de la source International Scientific Research Publications
$\alpha_1Q(a,b)+(1-\alpha_1)C(a,b) $ |
$\qquad\ Q^{\alpha_2}(a,b)C^{1-\alpha_2}(a,b) $ |
$\frac{Q(a,b)C(a,b)}{\alpha_3Q(a,b)+(1-\alpha_3)C(a,b)} $ |
$C\left(\sqrt{\alpha_4a^2+(1-\alpha_4)b^2},\sqrt{(1-\alpha_4)a^2+\alpha_4b^2}\right) $ |
Ji, Zhengchao  1 ; Ding, Qing  2 ; Zhao, Tiehong  3
@article{JNSA_2018_11_1_a10, author = {Ji, Zhengchao and Ding, Qing and Zhao, Tiehong }, title = {Optimal inequalities for a {Toader-type} mean by quadratic and contraharmonic means}, journal = {Journal of nonlinear sciences and its applications}, pages = {150-160}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/} }
TY - JOUR AU - Ji, Zhengchao AU - Ding, Qing AU - Zhao, Tiehong TI - Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 150 EP - 160 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/ DO - 10.22436/jnsa.011.01.11 LA - en ID - JNSA_2018_11_1_a10 ER -
%0 Journal Article %A Ji, Zhengchao %A Ding, Qing %A Zhao, Tiehong %T Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means %J Journal of nonlinear sciences and its applications %D 2018 %P 150-160 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/ %R 10.22436/jnsa.011.01.11 %G en %F JNSA_2018_11_1_a10
Ji, Zhengchao ; Ding, Qing ; Zhao, Tiehong . Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 150-160. doi : 10.22436/jnsa.011.01.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.11/
[1] Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., Volume 172 (2004), pp. 289-312 | DOI | Zbl
[2] Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997
[3] An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., Volume 31 (2000), pp. 693-699 | DOI | Zbl
[4] Pi and the AGM, John Wiley & Sons, NewYork, 1987
[5] Sharp bounds for Seiffert mean in terms of contraharmonic mean, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-6 | Zbl
[6] Optimal convex combinations bounds of centroidal and harmonic means for logarithmic and identric means,, Bull. Iranian Math. Soc., Volume 39 (2013), pp. 259-269 | Zbl
[7] Bounds of the Neuman-Sándor mean using power and identic means, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6
[8] Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3424-3432 | Zbl
[9] Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-12 | Zbl
[10] Inequalities between arithmetic-geometric, Gini, and Toader means , Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-11 | Zbl
[11] Optimal Lehmer mean bounds for the Toader mean , Results Math., Volume 61 (2012), pp. 223-229 | DOI | Zbl
[12] Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., Volume 395 (2012), pp. 637-642 | Zbl | DOI
[13] Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal., Volume 7 (2013), pp. 161-166 | DOI | Zbl
[14] Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., Volume 122 (2012), pp. 41-51 | Zbl | DOI
[15] Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., Volume 63 (2012), pp. 1177-1184 | DOI
[16] Sharp generalized Seiffert mean bounds for Toader mean, Abstr. Appl. Anal., Volume 2011 (2011 ), pp. 1-8 | Zbl
[17] Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., Volume 2009 (2009 ), pp. 1-6 | DOI | Zbl
[18] Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., Volume 60 (2010), pp. 83-89 | DOI | Zbl
[19] Sharp bounds for Neuman means in terms of geometric, arithmetic and quadratic means, J. Math. Inequal., Volume 10 (2016), pp. 301-312 | Zbl | DOI
[20] Inequalities and bounds for elliptic integrals , J. Approx. Theory, Volume 146 (2007), pp. 212-226 | DOI
[21] Inequalities and bounds for elliptic integrals II, Amer. Math. Soc., Volume 471 (2008), pp. 127-138 | DOI
[22] Sharp bounds by the power mean for the generalized Heronian mean, J. Inequal. Appl., Volume 2012 (2012 ), pp. 1-9 | Zbl | DOI
[23] Bounds for a Toader-type mean by arithmetic and contraharmonic means, Int. J. Pure Appl. Math., Volume 105 (2015), pp. 257-268
[24] Bounds for symmetric elliptic integrals, J. Approx. Theory, Volume 122 (2003), pp. 249-259 | DOI
[25] Sharp bounds for a special quasi- arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., Volume 2017 (2017), pp. 1-10 | Zbl | DOI
[26] On two problems concerning means, J. Hangzhou Inst. Electron. Eng., Volume 17 (1997), pp. 1-7
[27] Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., Volume 5 (2011), pp. 301-306 | DOI | Zbl
[28] Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl., Volume 218 (1998), pp. 358-368 | DOI
[29] Hypergeometric functions in geometric function theory , Special Functions and Differential Equations, 119–126, 1998
[30] Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl., Volume 402 (2013), pp. 119-126 | Zbl | DOI
[31] Refinenemts of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., Volume 37 (2017), pp. 607-622 | DOI
[32] An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., Volume 24 (2011), pp. 887-890 | Zbl | DOI
[33] Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., Volume 2017 (2017 ), pp. 1-12 | DOI
[34] Sharp bounds for Seiffert means in terms of Lehmer means, J. Math. Inequal., Volume 4 (2010), pp. 581-586 | Zbl | DOI
[35] A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., Volume 14 (2011), pp. 833-837 | DOI | Zbl
[36] Optimal inequalities between Neuman- Sándor, centroidal and harmonic means, J. Math. Inequal., Volume 7 (2013), pp. 593-600 | DOI | Zbl
[37] The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-9 | Zbl
[38] The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean, J. Math. Inequal., Volume 6 (2012), pp. 241-248 | DOI | Zbl
[39] A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017), pp. 729-735 | DOI | Zbl
[40] Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-13 | DOI | Zbl
[41] Optimal inequalities for bounding Toader mean by arithmetic and quadratic means, J. Inequal. Appl., Volume 2017 (2017 ), pp. 1-10 | DOI | Zbl
Cité par Sources :