Quadruple random common fixed point results of generalized Lipschitz mappings in cone $b$-metric spaces over Banach algebras
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 131-149.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of cone $b$-metric spaces over Banach algebras and present some quadruple random coincidence points and quadruple random common fixed point theorems for nonlinear operators in such spaces.
DOI : 10.22436/jnsa.011.01.10
Classification : 47H10, 60H25
Keywords: Quadruple random fixed point, quadruple common random fixed point, quadruple random coincidence point, cone \(b\)-metric space over Banach algebra

Kongban, Chayut  1 ; Kumam, Poom  2

1 KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand;KMUTT-Fixed Point Theory and Applications Research Group (KMUTT-FPTA), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 26 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
2 KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;KMUTT-Fixed Point Theory and Applications Research Group (KMUTT-FPTA), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 26 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
@article{JNSA_2018_11_1_a9,
     author = {Kongban, Chayut  and Kumam, Poom },
     title = {Quadruple random common fixed point results of generalized {Lipschitz} mappings in cone \(b\)-metric spaces over {Banach} algebras},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {131-149},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.10/}
}
TY  - JOUR
AU  - Kongban, Chayut 
AU  - Kumam, Poom 
TI  - Quadruple random common fixed point results of generalized Lipschitz mappings in cone \(b\)-metric spaces over Banach algebras
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 131
EP  - 149
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.10/
DO  - 10.22436/jnsa.011.01.10
LA  - en
ID  - JNSA_2018_11_1_a9
ER  - 
%0 Journal Article
%A Kongban, Chayut 
%A Kumam, Poom 
%T Quadruple random common fixed point results of generalized Lipschitz mappings in cone \(b\)-metric spaces over Banach algebras
%J Journal of nonlinear sciences and its applications
%D 2018
%P 131-149
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.10/
%R 10.22436/jnsa.011.01.10
%G en
%F JNSA_2018_11_1_a9
Kongban, Chayut ; Kumam, Poom . Quadruple random common fixed point results of generalized Lipschitz mappings in cone \(b\)-metric spaces over Banach algebras. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 131-149. doi : 10.22436/jnsa.011.01.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.10/

[1] Alotaibi, A.; S. M. Alsulami Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl., Volume 2011 (2011 ), pp. 1-13 | DOI

[2] Altun, I.; Damjanović, B.; D. Djorić Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 310-316 | DOI

[3] A. D. Arvanitakis A proof of the generalized Banach contraction conjecture , Proc. Amer. Math. Soc., Volume 131 (2003), pp. 3647-3656 | Zbl | DOI

[4] I. A. Bakhtin The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk , Volume 30 (1989), pp. 26-37

[5] Boyd, D. W.; J. S. W. Wong On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464

[6] Ćirić, L.; V. Lakshmikantham Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal. Appl., Volume 27 (2009), pp. 1246-1259 | DOI | Zbl

[7] Han, Y.; Xu, S.-Y. Some new theorems of expanding mappings without continuity in cone metric spaces , Fixed point Theory Appl., Volume 2013 (2013 ), pp. 1-9 | DOI

[8] Himmelberg, C. J. Measurable relations , Fund. Math., Volume 87 (1975), pp. 53-72 | EuDML

[9] Huang, H.-P.; S. Radenović Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 787-799 | Zbl

[10] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476 | DOI

[11] Hussain, N.; Latif, A.; N. Shafqat Weak contractive inequalities and compatible mixed monotone random operators in ordered metric spaces, J. Inequal. Appl., Volume 2012 (2012 ), pp. 1-20 | Zbl | DOI

[12] Hussain, N.; Shah, M. H. KKM mappings in cone b-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 1677-1684 | Zbl | DOI

[13] Jiang, B.-H.; Cai, Z.-L.; Chen, J.-Y.; H.-P. Huang Tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras , J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 465-482

[14] Karapınar, E.; Kumam, P.; W. Sintunavarat Coupled fixed point theorems in cone metric spaces with a c-distance and applications , Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-19 | DOI | Zbl

[15] Karapınar, E.; N. V. Luong Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Appl., Volume 64 (2012), pp. 1839-1848 | DOI

[16] Karapınar, E.; Luong, N. V.; Thuan, N. X. Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab. J. Math. (Springer), Volume 1 (2012), pp. 329-339 | DOI

[17] Kumam, P. Random common fixed points of single-valued and multivalued random operators in a uniformly convex Banach space, J. Comput. Anal. Appl., Volume 13 (2011), pp. 368-375 | Zbl

[18] Kumam, P.; Plubtieng, S. Random coincidence and random common fixed points of nonlinear multivalued random operators, Thai J. Math., Volume 5 (2007), pp. 155-163

[19] Kumam, P.; Plubteing, S. Random common fixed point theorems for a pair of multi-valued and single-valued nonexpansive random operators in a separable Banach space, Indian J. Math., Volume 51 (2009), pp. 101-115 | Zbl

[20] Lin, T.-C. Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc., Volume 103 (1988), pp. 1129-1135 | DOI

[21] Liu, H.; S.-Y. Xu Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings , Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | DOI

[22] McShane, E. J.; Jr., R. B. Warfield On Filippov’s implicit functions lemma, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 41-47 | DOI

[23] Merryfield, J.; Rothschild, B.; Jr., J. D. Stein An application of Ramsey’s theorem to the Banach contraction principle, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 927-933 | Zbl

[24] Mustafa, Z.; Aydi, H.; Karapınar, E. Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-19 | DOI

[25] Phiangsungnoen, S. Ulam-Hyers stability and well-posedness of the fixed point problems for contractive multi-valued operator in b-metric spaces, Commun. Math. Appl., Volume 7 (2016), pp. 241-262

[26] Radenović, S. Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl., Volume 58 (2009), pp. 1273-1278 | DOI

[27] Rahimi, H.; Rad, G. Soleimani; P. Kumam Coupled common fixed point theorems under weak contractions in cone metric type spaces, Thai. J. Math., Volume 12 (2014), pp. 1-14 | Zbl

[28] Rudin, W. Functional analysis, International Series in Pure and Applied Mathematics, Second edition, McGraw- Hill, Inc., New York, 1991

[29] Şahni, I.; Telci, M. Fixed points of contractive mappings on complete cone metric spaces, Hacet. J. Math. Stat., Volume 38 (2009), pp. 59-67

[30] Shatanawi, W.; F. Awawdeh Some fixed and coincidence point theorems for expansive maps in cone metric spaces, Fixed point Theory Appl., Volume 2012 (2012 ), pp. 1-10 | Zbl | DOI

[31] Shatanawi, W.; Mustafa, Z. On coupled random fixed point results in partially ordered metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 139-146

[32] Shen, Y.-H.; Qiu, D.; Chen, W. Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 138-141 | DOI

[33] Shi, L.; S.-Y. Xu Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-11 | DOI | Zbl

[34] Sintunavarat, W.; Cho, Y. J.; Kumam, P. Common fixed point theorems for c-distance in ordered cone metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 1969-1978 | DOI

[35] Sintunavarat, W.; Kumam, P.; Cho, Y. J. Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl., Volume 2012 (2012 ), pp. 1-16 | Zbl | DOI

[36] Špaček, A. Zufällige Gleichungen , (German) Czechoslovak Math. J., Volume 5 (1955), pp. 462-466

[37] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869 | DOI

[38] Xu, S.-Y.; Radenović, S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed point Theory Appl., Volume 2014 (2014 ), pp. 1-12 | DOI | Zbl

Cité par Sources :