Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz mappings and solutions of generalized equilibrium problem with application
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 108-130.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to introduce and consider a new accelerated hybrid shrinking projection method for finding a common element of the set $EP \cap F$ in reflexive Banach spaces, where $EP$ is the set of all solutions of a generalized equilibrium problem, and $F$ is the common fixed point set of finite uniformly closed families of countable Bregman quasi-Lipschitz mappings. It is proved that the sequence generated by the accelerated hybrid shrinking projection iteration, converges strongly to the point in $EP \cap F,$ under some conditions. This result is also applied to find the fixed point of Bregman asymptotically quasi-nonexpansive mappings. It is worth mentioning that, there are multiple projection points from the multiple points in the projection algorithm. Therefore the new projection method in this paper can accelerate the convergence speed of iterative sequence. The new results improve and extend the previously known ones in the literature.
DOI : 10.22436/jnsa.011.01.09
Classification : 47H05, 47H09, 47H10
Keywords: Bregman distance, Bregman quasi-Lipschitz mapping, accelerated hybrid algorithm, Bregman asymptotically quasi-nonexpansive mappings, equilibrium problem

Zhang, Jingling 1 ; Agarwal, Ravi P.  2 ; Jiang, Nan  3

1 Department of Mathematics, Tianjin University, Tianjin 300350, P. R. China
2 Department of Mathematics, Texas A&M University-Kingsville, Texas 78363, U. S. A.
3 Department of Mathematics, Tianjin University, Tianjin 300350, P. R. China;School of Mechanical Engineering, Tianjin University, Tianjin 300350, P. R. China
@article{JNSA_2018_11_1_a8,
     author = { Zhang, Jingling and Agarwal, Ravi P.  and Jiang, Nan },
     title = {Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable {Bregman} {quasi-Lipschitz}  mappings and solutions of generalized equilibrium problem with application},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {108-130},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/}
}
TY  - JOUR
AU  -  Zhang, Jingling
AU  - Agarwal, Ravi P. 
AU  - Jiang, Nan 
TI  - Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz  mappings and solutions of generalized equilibrium problem with application
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 108
EP  - 130
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/
DO  - 10.22436/jnsa.011.01.09
LA  - en
ID  - JNSA_2018_11_1_a8
ER  - 
%0 Journal Article
%A  Zhang, Jingling
%A Agarwal, Ravi P. 
%A Jiang, Nan 
%T Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz  mappings and solutions of generalized equilibrium problem with application
%J Journal of nonlinear sciences and its applications
%D 2018
%P 108-130
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/
%R 10.22436/jnsa.011.01.09
%G en
%F JNSA_2018_11_1_a8
 Zhang, Jingling; Agarwal, Ravi P. ; Jiang, Nan . Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz  mappings and solutions of generalized equilibrium problem with application. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 108-130. doi : 10.22436/jnsa.011.01.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/

[1] Alber, Y. I. Metric and generalized projection operators in Banach spaces: properties and applications. , In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes Pure Appl. Math., Volume 178 (1996), pp. 15-50 | Zbl

[2] Alber, Y.; Butnariu, D. Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces, J. Optim. Theory Appl., Volume 92 (1997), pp. 33-61 | DOI | Zbl

[3] Barbu, V.; Precupanu, T. Convexity and Optimization in Banach Spaces, Springer, Dordrecht, 2012 | DOI

[4] Bauschke, H. H.; Borwein, J. M.; Combettes, P. L. Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI

[5] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[6] Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., Volume 7 (1967), pp. 200-217 | Zbl | DOI

[7] Bruck, R.; Kuczumow, T.; Reich, S. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., Volume 65 (1993), pp. 169-179 | Zbl | DOI

[8] Butnariu, D.; Iusem, A. N.; Zălinescu, C. On uniform convexity, total convexity and convergence of the proximal points and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., Volume 10 (2003), pp. 35-61

[9] Butnariu, D.; Resmerita, E. Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl

[10] Censor, Y.; Lent, A. An iterative row-action method for interval convex programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | Zbl | DOI

[11] Chen, M.; Bi, J.; Su, Y. Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-19 | DOI | Zbl

[12] Chen, G.; Teboulle, M. Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM J. Optim., Volume 3 (1993), pp. 538-543 | DOI | Zbl

[13] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI

[14] Hao, Y. Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-14 | Zbl | DOI

[15] Hecai, Y.; Aichao, L. Projection algorithms for treating asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-15 | Zbl | DOI

[16] Inchan, I. Strong convergence theorems of modified Mann iteration methods for asymptotically nonexpansive mappings in Hilbert spaces, Int. J. Math. Anal., Volume 2 (2008), pp. 1135-1145 | Zbl

[17] Kohsaka, F.; Takahashi, W. Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstr. Appl. Anal., Volume 3 (2004), pp. 239-249

[18] Martín-Márquez, V.; Reich, S.; Sabach, S. Iterative methods for approximating fixed points of Bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Ser. S, Volume 6 (2013), pp. 1043-1063 | Zbl | DOI

[19] Martinet, B. Regularisation d’inequations variationnelles par approximations successives, Rev. Franaise Informat. Recherche Oprationnelle, Volume 4 (1970), pp. 154-158 | Zbl

[20] Naraghirad, E.; Yao, J.-C. Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | DOI

[21] Qin, X.; Huang, S.; Wang, T. On the convergence of hybrid projection algorithms for asymptotically quasi-\(\phi\)-nonexpansive mappings, Comput. Math. Appl., Volume 61 (2011), pp. 851-859 | DOI

[22] Qin, X.; Wang, L. On asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-13

[23] Reich, S.; Sabach, S. A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl

[24] Reich, S.; Sabach, S. Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI

[25] Reich, S.; Sabach, S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI

[26] Reich, S.; Sabach, S. Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl., Volume 49 (2011), pp. 301-316 | DOI | Zbl

[27] Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159 | DOI

[28] Suantai, S.; Cho, Y. J.; Cholamjiak, P. Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., Volume 64 (2012), pp. 489-499 | DOI

[29] Takahashi, S.; Takahashi, W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., Volume 69 (2008), pp. 1025-1033 | DOI

[30] Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286 | DOI

[31] Tomizawa, Y. A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | DOI

[32] Yao, Y.-H.; Postolache, M.; Kang, S. M. Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-13 | DOI | Zbl

[33] Yao, Y.-H.; Shahzad, N.; Liou, Y.-C. Modified semi- implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI

[34] Yuan, Q. Some results on asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, J. Fixed Point Theory, Volume 2012 (2012 ), p. 1-1

[35] Zălinescu, C. Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002

Cité par Sources :