Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Jingling 1 ; Agarwal, Ravi P.  2 ; Jiang, Nan  3
@article{JNSA_2018_11_1_a8, author = { Zhang, Jingling and Agarwal, Ravi P. and Jiang, Nan }, title = {Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable {Bregman} {quasi-Lipschitz} mappings and solutions of generalized equilibrium problem with application}, journal = {Journal of nonlinear sciences and its applications}, pages = {108-130}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/} }
TY - JOUR AU - Zhang, Jingling AU - Agarwal, Ravi P. AU - Jiang, Nan TI - Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz mappings and solutions of generalized equilibrium problem with application JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 108 EP - 130 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/ DO - 10.22436/jnsa.011.01.09 LA - en ID - JNSA_2018_11_1_a8 ER -
%0 Journal Article %A Zhang, Jingling %A Agarwal, Ravi P. %A Jiang, Nan %T Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz mappings and solutions of generalized equilibrium problem with application %J Journal of nonlinear sciences and its applications %D 2018 %P 108-130 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/ %R 10.22436/jnsa.011.01.09 %G en %F JNSA_2018_11_1_a8
Zhang, Jingling; Agarwal, Ravi P. ; Jiang, Nan . Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz mappings and solutions of generalized equilibrium problem with application. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 108-130. doi : 10.22436/jnsa.011.01.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.09/
[1] Metric and generalized projection operators in Banach spaces: properties and applications. , In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes Pure Appl. Math., Volume 178 (1996), pp. 15-50 | Zbl
[2] Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces, J. Optim. Theory Appl., Volume 92 (1997), pp. 33-61 | DOI | Zbl
[3] Convexity and Optimization in Banach Spaces, Springer, Dordrecht, 2012 | DOI
[4] Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI
[5] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[6] The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., Volume 7 (1967), pp. 200-217 | Zbl | DOI
[7] Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., Volume 65 (1993), pp. 169-179 | Zbl | DOI
[8] On uniform convexity, total convexity and convergence of the proximal points and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., Volume 10 (2003), pp. 35-61
[9] Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl
[10] An iterative row-action method for interval convex programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | Zbl | DOI
[11] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-19 | DOI | Zbl
[12] Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM J. Optim., Volume 3 (1993), pp. 538-543 | DOI | Zbl
[13] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI
[14] Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-14 | Zbl | DOI
[15] Projection algorithms for treating asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-15 | Zbl | DOI
[16] Strong convergence theorems of modified Mann iteration methods for asymptotically nonexpansive mappings in Hilbert spaces, Int. J. Math. Anal., Volume 2 (2008), pp. 1135-1145 | Zbl
[17] Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstr. Appl. Anal., Volume 3 (2004), pp. 239-249
[18] Iterative methods for approximating fixed points of Bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Ser. S, Volume 6 (2013), pp. 1043-1063 | Zbl | DOI
[19] Regularisation d’inequations variationnelles par approximations successives, Rev. Franaise Informat. Recherche Oprationnelle, Volume 4 (1970), pp. 154-158 | Zbl
[20] Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | DOI
[21] On the convergence of hybrid projection algorithms for asymptotically quasi-\(\phi\)-nonexpansive mappings, Comput. Math. Appl., Volume 61 (2011), pp. 851-859 | DOI
[22] On asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-13
[23] A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl
[24] Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI
[25] Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI
[26] Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl., Volume 49 (2011), pp. 301-316 | DOI | Zbl
[27] Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159 | DOI
[28] Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., Volume 64 (2012), pp. 489-499 | DOI
[29] Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., Volume 69 (2008), pp. 1025-1033 | DOI
[30] Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286 | DOI
[31] A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | DOI
[32] Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-13 | DOI | Zbl
[33] Modified semi- implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI
[34] Some results on asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, J. Fixed Point Theory, Volume 2012 (2012 ), p. 1-1
[35] Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002
Cité par Sources :