Fixed point theorems for contractions of rational type in complete metric spaces
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 98-107.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Samet et al. in [S. Samet, C. Vetro, H. Yazidi, J. Nonlinear Sci. Appl., ${\bf 6}$ (2013), 162--169] proved some fixed point theorem for contractions of rational type. In order to clarify the mathematical structure of contractions of rational type, we generalize this theorem in a general setting.
DOI : 10.22436/jnsa.011.01.08
Classification : 54H25
Keywords: Fixed point, contraction of rational type, complete metric space

Suzuki, Tomonari  1

1 Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan
@article{JNSA_2018_11_1_a7,
     author = {Suzuki, Tomonari },
     title = {Fixed point theorems for contractions of rational type in complete metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {98-107},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/}
}
TY  - JOUR
AU  - Suzuki, Tomonari 
TI  - Fixed point theorems for contractions of rational type in complete metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 98
EP  - 107
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/
DO  - 10.22436/jnsa.011.01.08
LA  - en
ID  - JNSA_2018_11_1_a7
ER  - 
%0 Journal Article
%A Suzuki, Tomonari 
%T Fixed point theorems for contractions of rational type in complete metric spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 98-107
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/
%R 10.22436/jnsa.011.01.08
%G en
%F JNSA_2018_11_1_a7
Suzuki, Tomonari . Fixed point theorems for contractions of rational type in complete metric spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 98-107. doi : 10.22436/jnsa.011.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/

[1] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[2] Caccioppoli, R. Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Lincei, Volume 11 (1930), pp. 794-799

[3] Ćirić, L. A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (Beograd), Volume 30 (1981), pp. 25-27 | EuDML

[4] Dass, B. K.; Gupta, S. An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458

[5] Gupta, A. N.; Saxena, A. A unique fixed point theorem in metric spaces, Math. Student, Volume 52 (1984), pp. 156-158

[6] Hegedüs, M.; Szilágyi, T. Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math. Japon., Volume 25 (1980), pp. 147-157 | Zbl

[7] Jachymski, J. Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., Volume 194 (1995), pp. 293-303 | DOI | Zbl

[8] Jachymski, J. Remarks on contractive conditions of integral type, Nonlinear Anal., Volume 71 (2009), pp. 1073-1081 | Zbl | DOI

[9] Karapinar, E.; Shatanawi, W.; Taş, K. Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes, Volume 14 (2013), pp. 135-142 | Zbl

[10] Kuczma, M.; Choczewski, B.; Ger, R. Iterative functional equations, Cambridge University Press, Cambridge, 1990

[11] Matkowski, J. Fixed point theorems for contractive mappings in metric spaces, Časopis Pěst. Mat., Volume 105 (1980), pp. 341-344

[12] Meir, A.; Keeler, E. A theorem on contraction mappings, J. Math. Anal. Appl., Volume 28 (1969), pp. 326-329

[13] Redjel, N.; Dehici, A.; Erhan, ˙I. M. A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-9 | Zbl | DOI

[14] Samet, S.; Vetro, C.; Yazidi, H. A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 162-169 | Zbl

[15] Suzuki, T. Discussion of several contractions by Jachymski’s approach, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | DOI | Zbl

Cité par Sources :