Voir la notice de l'article provenant de la source International Scientific Research Publications
Suzuki, Tomonari  1
@article{JNSA_2018_11_1_a7, author = {Suzuki, Tomonari }, title = {Fixed point theorems for contractions of rational type in complete metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {98-107}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/} }
TY - JOUR AU - Suzuki, Tomonari TI - Fixed point theorems for contractions of rational type in complete metric spaces JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 98 EP - 107 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/ DO - 10.22436/jnsa.011.01.08 LA - en ID - JNSA_2018_11_1_a7 ER -
%0 Journal Article %A Suzuki, Tomonari %T Fixed point theorems for contractions of rational type in complete metric spaces %J Journal of nonlinear sciences and its applications %D 2018 %P 98-107 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/ %R 10.22436/jnsa.011.01.08 %G en %F JNSA_2018_11_1_a7
Suzuki, Tomonari . Fixed point theorems for contractions of rational type in complete metric spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 98-107. doi : 10.22436/jnsa.011.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.08/
[1] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[2] Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Lincei, Volume 11 (1930), pp. 794-799
[3] A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (Beograd), Volume 30 (1981), pp. 25-27 | EuDML
[4] An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458
[5] A unique fixed point theorem in metric spaces, Math. Student, Volume 52 (1984), pp. 156-158
[6] Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math. Japon., Volume 25 (1980), pp. 147-157 | Zbl
[7] Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., Volume 194 (1995), pp. 293-303 | DOI | Zbl
[8] Remarks on contractive conditions of integral type, Nonlinear Anal., Volume 71 (2009), pp. 1073-1081 | Zbl | DOI
[9] Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes, Volume 14 (2013), pp. 135-142 | Zbl
[10] Iterative functional equations, Cambridge University Press, Cambridge, 1990
[11] Fixed point theorems for contractive mappings in metric spaces, Časopis Pěst. Mat., Volume 105 (1980), pp. 341-344
[12] A theorem on contraction mappings, J. Math. Anal. Appl., Volume 28 (1969), pp. 326-329
[13] A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-9 | Zbl | DOI
[14] A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 162-169 | Zbl
[15] Discussion of several contractions by Jachymski’s approach, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | DOI | Zbl
Cité par Sources :