On the rational difference equation $y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}$
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 80-97.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we examine and explore the boundedness, periodicity, and global stability of the positive solutions of the rational difference equation
$ y_{{n+1} }={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{ n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q} }+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}, $
where the coefficients ${\alpha_{i},\beta_{i}\in (0,\infty ),\ i=0,1,2,3,4},$ and $p,q,r$, and $s$ are positive integers. The initial conditions $y_{-s},...,y_{-r},..., y_{-q},..., y_{{-p }},..., y_{-1},y_{0}$ are arbitrary positive real numbers such that $p$. Some numerical examples will be given to illustrate our result.
DOI : 10.22436/jnsa.011.01.07
Classification : 39A10
Keywords: Difference equation, boundedness, prime period two solution, global stability

Alotaibi, A. M.  1 ; El-Moneam, M. A.  2 ; Noorani, M. S. M.  1

1 School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
2 Mathematics Department, Faculty of Science, Jazan University, Kingdom of Saudi Arabia
@article{JNSA_2018_11_1_a6,
     author = {Alotaibi, A. M.  and El-Moneam, M. A.  and Noorani, M. S. M. },
     title = {On  the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {80-97},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/}
}
TY  - JOUR
AU  - Alotaibi, A. M. 
AU  - El-Moneam, M. A. 
AU  - Noorani, M. S. M. 
TI  - On  the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 80
EP  - 97
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/
DO  - 10.22436/jnsa.011.01.07
LA  - en
ID  - JNSA_2018_11_1_a6
ER  - 
%0 Journal Article
%A Alotaibi, A. M. 
%A El-Moneam, M. A. 
%A Noorani, M. S. M. 
%T On  the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\)
%J Journal of nonlinear sciences and its applications
%D 2018
%P 80-97
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/
%R 10.22436/jnsa.011.01.07
%G en
%F JNSA_2018_11_1_a6
Alotaibi, A. M. ; El-Moneam, M. A. ; Noorani, M. S. M. . On  the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 80-97. doi : 10.22436/jnsa.011.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/

[1] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation \(x_{n+1}=ax_{n}-bx_{n}/\left( cx_{n}-dx_{n-1}\right) \), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10 | DOI

[2] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation \(x_{n+1}=\frac{\alpha x_{n-l}+\beta x_{n-k}}{ Ax_{n-l}+Bx_{n-k}}\), Acta Math. Vietnam., Volume 33 (2008), pp. 85-94

[3] El-Moneam, M. A.; Alamoudy, S. O. On study of the asymptotic behavior of some rational difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109

[4] Elsayed, E. M. On the global attractivity and the periodic character of a recursive sequence, Opuscula Math., Volume 30 (2010), pp. 431-446 | DOI | Zbl

[5] Grove, E. A.; Ladas, G. Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, Chapman & Hall/CRC, Boca Raton, FL, 2005 | Zbl

[6] Li, W.-T.; Sun, H.-R. Dynamics of a rational difference equation, Appl. Math. Comput., Volume 163 (2005), pp. 577-591 | DOI

[7] Obaid, M. A.; Elsayed, E. M.; El-Dessoky, M. M. Global attractivity and periodic character of difference equation of order four, Discrete Dyn. Nat. Soc., Volume 2012 (2012 ), pp. 1-20 | Zbl | DOI

[8] Saleh, M.; Abu-Baha, S. Dynamics of a higher order rational difference equation, Appl. Math. Comput., Volume 181 (2006), pp. 84-102 | DOI

[9] Zayed, E. M. E.; EL-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{D+\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}}{Ax_{n}+Bx_{n-1}+Cx_{n-2}}\), Comm. Appl. Nonlinear Anal., Volume 12 (2005), pp. 15-28

[10] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}}{Ax_{n}+Bx_{n-1}+Cx_{n-2}+Dx_{n-3}}\) , J. Appl. Math. Comput., Volume 22 (2006), pp. 247-262

[11] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence\(x_{n+1}=\left( A+\sum_{i=0}^{k}\alpha _{i}x_{n-i}\right) /\left(B+\sum_{i=0}^{k}\beta _{i}x_{n-i}\right)\), Int. J. Math. Math. Sci., Volume 2007 (2007), pp. 1-12

[12] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\left( A+\sum_{i=0}^{k}\alpha _{i}x_{n-i}\right)/\sum_{i=0}^{k}\beta _{i}x_{n-i}\), Math. Bohem., Volume 133 (2008), pp. 225-239

[13] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=ax_{n}-bx_{n}/\left( cx_{n}-dx_{n-k}\right)\), Comm. Appl. Nonlinear Anal., Volume 15 (2008), pp. 47-57

[14] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+\left( \beta x_{n}+\gamma x_{n-k}\right) /\left(Bx_{n}+Cx_{n-k}\right)\), Comm. Appl. Nonlinear Anal., Volume 16 (2009), pp. 91-106

[15] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(\ x_{n+1}=\left( \alpha +\beta x_{n-k}\right) /\left( \gamma-x_{n}\right)\), J. Appl. Math. Comput., Volume 31 (2009), pp. 229-237 | DOI

[16] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{ Cx_{n}+Dx_{n-k}}\), Acta. Appl. Math., Volume 111 (2010), pp. 287-301 | DOI

[17] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-k}}{ \beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-k}}\), Math. Bohem., Volume 135 (2010), pp. 319-336

[18] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\gamma x_{n-k}+\left( ax_{n}+bx_{n-k}\right) /\left( cx_{n}-dx_{n-k}\right)\), Bull. Iranian Math. Soc., Volume 36 (2010), pp. 103-115

[19] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/\left(cx_{n}+\delta dx_{n-k}\right)\), Acta. Math. Vietnam., Volume 35 (2010), pp. 355-369

[20] Zayed, E. M. E.; El-Moneam, M. A. On the global asymptotic stability for a rational recursive sequence, Iran. J. Sci. Technol. Trans. A Sci., Volume 35 (2011), pp. 333-339

[21] Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations, Translated from Sovrem. Mat. Prilozh., 70 (2011), J. Math. Sci. (N.Y.), Volume 177 (2011), pp. 487-499 | DOI

[22] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{ A+\alpha _{0}x_{n}+\alpha _{1}x_{n-\sigma }}{ B+\beta _{0}x_{n}+\beta _{1}x_{n-\tau }}\), Acta Math. Vietnam., Volume 36 (2011), pp. 73-87

[23] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-m}+\alpha _{3}x_{n-k}}{\beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-m}+\beta _{3}x_{n-k}}\), WSEAS. Trans. Math., Volume 11 (2012), pp. 373-382

[24] Zayed, E. M. E.; El-Moneam, M. A. On the qualitative study of the nonlinear difference equation \(x_{n+1}=\frac{\alpha x_{n-\sigma }}{\beta+\gamma x_{n-\tau }^{p}}\), Fasc. Math., Volume 50 (2013), pp. 137-147

Cité par Sources :