Voir la notice de l'article provenant de la source International Scientific Research Publications
$ y_{{n+1} }={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{ n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q} }+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}, $ |
Alotaibi, A. M.  1 ; El-Moneam, M. A.  2 ; Noorani, M. S. M.  1
@article{JNSA_2018_11_1_a6, author = {Alotaibi, A. M. and El-Moneam, M. A. and Noorani, M. S. M. }, title = {On the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\)}, journal = {Journal of nonlinear sciences and its applications}, pages = {80-97}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/} }
TY - JOUR AU - Alotaibi, A. M. AU - El-Moneam, M. A. AU - Noorani, M. S. M. TI - On the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\) JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 80 EP - 97 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/ DO - 10.22436/jnsa.011.01.07 LA - en ID - JNSA_2018_11_1_a6 ER -
%0 Journal Article %A Alotaibi, A. M. %A El-Moneam, M. A. %A Noorani, M. S. M. %T On the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\) %J Journal of nonlinear sciences and its applications %D 2018 %P 80-97 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/ %R 10.22436/jnsa.011.01.07 %G en %F JNSA_2018_11_1_a6
Alotaibi, A. M. ; El-Moneam, M. A. ; Noorani, M. S. M. . On the rational difference equation \(y_{{n+1}}={\frac {\alpha_{{0}}y_{{n}}+\alpha_{{1}}y_{{n-p}}+\alpha_{{2}}y_{{n-q}} +\alpha_{{3}}y_{{n-r}}+\alpha_{{4}}y_{{n-s}}}{\beta_{{0}}y_{{n}}+\beta_{{1}}y_{{n-p} }+\beta_{{2}}y_{{n-q}}+\beta_{{3}}y_{{n-r}}+\beta_{{4}}y_{{n-s}}}}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 80-97. doi : 10.22436/jnsa.011.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.07/
[1] On the difference equation \(x_{n+1}=ax_{n}-bx_{n}/\left( cx_{n}-dx_{n-1}\right) \), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10 | DOI
[2] On the difference equation \(x_{n+1}=\frac{\alpha x_{n-l}+\beta x_{n-k}}{ Ax_{n-l}+Bx_{n-k}}\), Acta Math. Vietnam., Volume 33 (2008), pp. 85-94
[3] On study of the asymptotic behavior of some rational difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109
[4] On the global attractivity and the periodic character of a recursive sequence, Opuscula Math., Volume 30 (2010), pp. 431-446 | DOI | Zbl
[5] Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, Chapman & Hall/CRC, Boca Raton, FL, 2005 | Zbl
[6] Dynamics of a rational difference equation, Appl. Math. Comput., Volume 163 (2005), pp. 577-591 | DOI
[7] Global attractivity and periodic character of difference equation of order four, Discrete Dyn. Nat. Soc., Volume 2012 (2012 ), pp. 1-20 | Zbl | DOI
[8] Dynamics of a higher order rational difference equation, Appl. Math. Comput., Volume 181 (2006), pp. 84-102 | DOI
[9] On the rational recursive sequence \(x_{n+1}=\frac{D+\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}}{Ax_{n}+Bx_{n-1}+Cx_{n-2}}\), Comm. Appl. Nonlinear Anal., Volume 12 (2005), pp. 15-28
[10] On the rational recursive sequence \(x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}}{Ax_{n}+Bx_{n-1}+Cx_{n-2}+Dx_{n-3}}\) , J. Appl. Math. Comput., Volume 22 (2006), pp. 247-262
[11] On the rational recursive sequence\(x_{n+1}=\left( A+\sum_{i=0}^{k}\alpha _{i}x_{n-i}\right) /\left(B+\sum_{i=0}^{k}\beta _{i}x_{n-i}\right)\), Int. J. Math. Math. Sci., Volume 2007 (2007), pp. 1-12
[12] On the rational recursive sequence \(x_{n+1}=\left( A+\sum_{i=0}^{k}\alpha _{i}x_{n-i}\right)/\sum_{i=0}^{k}\beta _{i}x_{n-i}\), Math. Bohem., Volume 133 (2008), pp. 225-239
[13] On the rational recursive sequence \(x_{n+1}=ax_{n}-bx_{n}/\left( cx_{n}-dx_{n-k}\right)\), Comm. Appl. Nonlinear Anal., Volume 15 (2008), pp. 47-57
[14] On the rational recursive sequence \(x_{n+1}=Ax_{n}+\left( \beta x_{n}+\gamma x_{n-k}\right) /\left(Bx_{n}+Cx_{n-k}\right)\), Comm. Appl. Nonlinear Anal., Volume 16 (2009), pp. 91-106
[15] On the rational recursive sequence \(\ x_{n+1}=\left( \alpha +\beta x_{n-k}\right) /\left( \gamma-x_{n}\right)\), J. Appl. Math. Comput., Volume 31 (2009), pp. 229-237 | DOI
[16] On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{ Cx_{n}+Dx_{n-k}}\), Acta. Appl. Math., Volume 111 (2010), pp. 287-301 | DOI
[17] On the rational recursive sequence \(x_{n+1}=\frac{\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-k}}{ \beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-k}}\), Math. Bohem., Volume 135 (2010), pp. 319-336
[18] On the rational recursive sequence \(x_{n+1}=\gamma x_{n-k}+\left( ax_{n}+bx_{n-k}\right) /\left( cx_{n}-dx_{n-k}\right)\), Bull. Iranian Math. Soc., Volume 36 (2010), pp. 103-115
[19] On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/\left(cx_{n}+\delta dx_{n-k}\right)\), Acta. Math. Vietnam., Volume 35 (2010), pp. 355-369
[20] On the global asymptotic stability for a rational recursive sequence, Iran. J. Sci. Technol. Trans. A Sci., Volume 35 (2011), pp. 333-339
[21] On the global attractivity of two nonlinear difference equations, Translated from Sovrem. Mat. Prilozh., 70 (2011), J. Math. Sci. (N.Y.), Volume 177 (2011), pp. 487-499 | DOI
[22] On the rational recursive sequence \(x_{n+1}=\frac{ A+\alpha _{0}x_{n}+\alpha _{1}x_{n-\sigma }}{ B+\beta _{0}x_{n}+\beta _{1}x_{n-\tau }}\), Acta Math. Vietnam., Volume 36 (2011), pp. 73-87
[23] On the rational recursive sequence \(x_{n+1}=\frac{\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-m}+\alpha _{3}x_{n-k}}{\beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-m}+\beta _{3}x_{n-k}}\), WSEAS. Trans. Math., Volume 11 (2012), pp. 373-382
[24] On the qualitative study of the nonlinear difference equation \(x_{n+1}=\frac{\alpha x_{n-\sigma }}{\beta+\gamma x_{n-\tau }^{p}}\), Fasc. Math., Volume 50 (2013), pp. 137-147
Cité par Sources :