Common fixed points of monotone Lipschitzian semigroups in Banach spaces
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 73-79.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the existence of common fixed points of monotone Lipschitzian semigroup in Banach spaces under the natural condition that the images under the action of the semigroup at certain point are comparable to the point. In particular, we prove that if one map in the semigroup is a monotone contraction mapping, then such common fixed point exists. In the case of monotone nonexpansive semigroup we prove the existence of common fixed points if the Banach space is uniformly convex in every direction. This assumption is weaker than uniform convexity.
DOI : 10.22436/jnsa.011.01.06
Classification : 47H10, 47H09
Keywords: Common fixed point, fixed point, monotone contraction mappings, monotone nonexpansive mappings, monotone Lipschitzian semigroup

Bachar, M.  1 ; Khamsi, Mohamed A.  2 ; Kozlowski, W. M.  3 ; Bounkhel, M.  1

1 Department of Mathematics, College of Science, King Saud University, Saudi Arabia
2 Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, U. S. A.;Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3 School of Mathematics and Statistics, University of New South Wales, Australia
@article{JNSA_2018_11_1_a5,
     author = {Bachar, M.  and Khamsi, Mohamed A.  and Kozlowski, W. M.  and Bounkhel, M. },
     title = {Common fixed points of monotone {Lipschitzian} semigroups in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {73-79},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.06/}
}
TY  - JOUR
AU  - Bachar, M. 
AU  - Khamsi, Mohamed A. 
AU  - Kozlowski, W. M. 
AU  - Bounkhel, M. 
TI  - Common fixed points of monotone Lipschitzian semigroups in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 73
EP  - 79
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.06/
DO  - 10.22436/jnsa.011.01.06
LA  - en
ID  - JNSA_2018_11_1_a5
ER  - 
%0 Journal Article
%A Bachar, M. 
%A Khamsi, Mohamed A. 
%A Kozlowski, W. M. 
%A Bounkhel, M. 
%T Common fixed points of monotone Lipschitzian semigroups in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 73-79
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.06/
%R 10.22436/jnsa.011.01.06
%G en
%F JNSA_2018_11_1_a5
Bachar, M. ; Khamsi, Mohamed A. ; Kozlowski, W. M. ; Bounkhel, M. . Common fixed points of monotone Lipschitzian semigroups in Banach spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 73-79. doi : 10.22436/jnsa.011.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.06/

[1] Alfuraidan, M. R.; Khamsi, M. A. Fibonacci-Mann iteration for monotone asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., Volume 96 (2017), pp. 307-316 | Zbl | DOI

[2] Bachar, M.; Khamsi, M. A. On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-11 | Zbl | DOI

[3] Bachar, M.; Khamsi, M. A. Recent contributions to fixed point theory of monotone mappings, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 1953-1976 | DOI | Zbl

[4] Beauzamy, B. Introduction to Banach spaces and their geometry , North-Holland Mathematics Studies, Notas de Matemática [Mathematical Notes], North-Holland Publishing Co., Amsterdam-New York, 1982

[5] Belluce, L. P.; Kirk, W. A. Nonexpansive mappings and fixed-points in Banach spaces, Illinois J. Math., Volume 11 (1967), pp. 474-479

[6] Browder, F. E. Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., Volume 54 (1965), pp. 1041-1044

[7] Bruck, R. E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc., Volume 179 (1973), pp. 251-262 | DOI

[8] Garkavi, A. L. The best possible net and the best possible cross-section of a set in a normed space, Amer. Math. Soc. Transl. Ser. II, Volume 39 (1964), pp. 111-132 | DOI | Zbl

[9] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge University PressCambridge Studies in Advanced Mathematics, , Cambridge, 1990 | DOI

[10] Göhde, D. Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., Volume 30 (1965), pp. 251-258 | Zbl | DOI

[11] Khamsi, M. A.; W. A. Kirk An introduction to metric spaces and fixed point theory, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001 | DOI

[12] Kirk, W. A. A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, Volume 72 (1965), pp. 1004-1006 | DOI | Zbl

[13] Kozlowski, W. M. Monotone Lipschitzian semigroups in Banach spaces, J. Aust. Math. Soc. (in press)

[14] Lim, T. C. A fixed point theorem for families on nonexpansive mappings, Pacific J. Math., Volume 53 (1974), pp. 487-493

[15] Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 72 (1967), pp. 591-597

[16] N. H. Pavel Nonlinear evolution operators and semigroups, Applications to partial differential equations, Lecture Notes in Mathematics, Springer-Verlag , Berlin, 1987

[17] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983 | DOI

[18] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443 | Zbl | DOI

[19] Vetro, F. On approximating curves associated with nonexpansive mappings, Carpathian J. Math., Volume 27 (2011), pp. 142-147 | Zbl

[20] Vetro, F. Fixed point results for nonexpansive mappings on metric spaces, Filomat, Volume 29 (2015), pp. 2011-2020 | DOI

[21] Zizler, V. On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. Rozprawy Mat., Volume 87 (1971), pp. 1-33 | EuDML

Cité par Sources :