On some rational systems of difference equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 49-72.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Our goal in this paper is to find the form of solutions for the following systems of rational difference equations:
$ x_{n+1}=\frac{x_{n-3}y_{n-4}}{y_{n}(\pm 1\pm x_{n-3}y_{n-4})},\quad y_{n+1}=\frac{y_{n-3}x_{n-4}}{x_{n}(\pm 1\pm y_{n-3}x_{n-4})},\quad n=0,1,\ldots, $
where the initial conditions have non-zero real numbers.
DOI : 10.22436/jnsa.011.01.05
Classification : 39A10
Keywords: Form of solution, stability, rational difference equations, rational systems

El-Dessoky, M. M.  1 ; Khaliq, A. 2 ; Asiri, A. 3

1 Mathematics Department, Faculty of Science, King AbdulAziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia;Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2 Department of Mathematics, Riphah International University, Lahore, Pakistan
3 Mathematics Department, Faculty of Science, King AbdulAziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2018_11_1_a4,
     author = {El-Dessoky, M. M.  and Khaliq, A. and Asiri, A.},
     title = {On some rational systems of difference equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {49-72},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.05/}
}
TY  - JOUR
AU  - El-Dessoky, M. M. 
AU  - Khaliq, A.
AU  - Asiri, A.
TI  - On some rational systems of difference equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 49
EP  - 72
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.05/
DO  - 10.22436/jnsa.011.01.05
LA  - en
ID  - JNSA_2018_11_1_a4
ER  - 
%0 Journal Article
%A El-Dessoky, M. M. 
%A Khaliq, A.
%A Asiri, A.
%T On some rational systems of difference equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 49-72
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.05/
%R 10.22436/jnsa.011.01.05
%G en
%F JNSA_2018_11_1_a4
El-Dessoky, M. M. ; Khaliq, A.; Asiri, A. On some rational systems of difference equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 49-72. doi : 10.22436/jnsa.011.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.05/

[1] Alzahrani, E. O.; El-Dessoky, M. M.; Elsayed, E. M.; Kuang, Y. Solutions and Properties of Some Degenerate Systems of Difference Equations, J. Comput. Anal. Appl., Volume 18 (2015), pp. 321-333 | Zbl

[2] Bao, H. On a System of Second-Order Nonlinear Difference Equations, J. Appl. Math. Phys., Volume 3 (2015), pp. 903-910

[3] Camouzis, E. Open problems and Conjectures, J. Difference Equ. Appl., Volume 15 (2009), pp. 203-323

[4] Clark, C. A.; Kulenović, M. R. S.; Selgrade, J. F. On a system of rational difference equations, J. Difference Equ. Appl., Volume 11 (2005), pp. 565-580 | DOI

[5] Din, Q.; Elsayed, E. M. Stability analysis of a discrete ecological model, Comput. Ecol. Softw., Volume 4 (2014), pp. 89-103

[6] Din, Q.; Qureshi, M. N.; Khan, A. Q. Dynamics of a fourth-order system of rational difference equations, Adv. Difference Equ., Volume 2012 (2012 ), pp. 1-15 | Zbl | DOI

[7] Din, Q.; Qureshi, M. N.; Khan, A. Q. Qualitative behavior of an anti-competitive system of third-order rational difference equations, Comput. Ecol. Softw., Volume 4 (2014), pp. 104-115

[8] El-Dessoky, M. M. On a systems of rational difference equations of Order Two, Proc. Jangjeon Math. Soc., Volume 19 (2016), pp. 271-284

[9] El-Dessoky, M. M. Solution of a rational systems of difference equations of order three, Mathematics, Volume 2016 (2016 ), pp. 1-12

[10] El-Dessoky, M. M. The form of solutions and periodicity for some systems of third -order rational difference equations, Math. Method Appl. Sci., Volume 39 (2016), pp. 1076-1092 | DOI | Zbl

[11] El-Dessoky, M. M.; Elsayed, E. M. On a solution of system of three fractional difference equations, J. Comput. Anal. Appl., Volume 19 (2015), pp. 760-769

[12] El-Dessoky, M. M.; Elsayed, E. M.; Alghamdi, M. Solutions and periodicity for some systems of fourth order rational difference equations, J. Comput. Anal. Appl., Volume 18 (2015), pp. 179-194 | Zbl

[13] El-Dessoky, M. M.; Mansour, M.; Elsayed, E. M. Solutions of some rational systems of difference equations, Util. Math., Volume 92 (2013), pp. 329-336

[14] Elsayed, E. M.; El-Dessoky, M. M.; Alzahrani, E. O. The Form of The Solution and Dynamics of a Rational Recursive Sequence, J. Comput. Anal. Appl., Volume 17 (2014), pp. 172-186 | Zbl

[15] Elsayed, E. M.; Mansour, M.; El-Dessoky, M. M. Solutions of fractional systems of difference equations, Ars Combin., Volume 110 (2013), pp. 469-479

[16] Khan, A. Q.; Qureshi, M. N. Global dynamics of some systems of rational difference equations, J. Egyptian Math. Soc., Volume 24 (2016), pp. 30-36 | Zbl | DOI

[17] Khan, A. Q.; Qureshi, M. N.; Din, Q. Global dynamics of some systems of higher-order rational difference equations, Adv. Difference Equ., Volume 2013 (2013), pp. 1-23 | Zbl | DOI

[18] Kocić, V. L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993 | DOI

[19] Kulenovic, M.; Ladas, G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall , CRC Press, U.S.A., 2001

[20] Kurbanlı, A. S. On the Behavior of Solutions of the System of Rational Difference Equations, World Appl. Sci. J., Volume 10 (2010), pp. 1344-1350

[21] Kurbanlı, A. S.; Çinar, C.; Yalçinkaya, I. On the behavior of positive solutions of the system of rational difference equations \(x_{n+1} = \frac{x_{n-1}}{ y_nx_{n-1}+1} , y_{n+1} = \frac{y_{n-1}}{ x_ny_{n-1}+1}\), Math. Comput. Model., Volume 53 (2011), pp. 1261-1267 | DOI

[22] Mansour, M.; El-Dessoky, M. M.; Elsayed, E. M. On the solution of rational systems of difference equations, J. Comput. Anal. Appl., Volume 15 (2013), pp. 967-976

[23] Neyrameh, A.; Neyrameh, H.; Ebrahimi, M.; Roozi, A. Analytic solution diffusivity equation in rational form, World Appl. Sci. J., Volume 10 (2010), pp. 764-768

[24] Özban, A. Y. On the positive solutions of the system of rational difference equations, J. Math. Anal. Appl., Volume 323 (2006), pp. 26-32 | DOI

[25] Papaschinopoulos, G.; Schinas, C. J.; Stefanidou, G. On a k-order system of Lyness-type difference equations, Adv. Difference Equ., Volume 2007 (2007), pp. 1-13 | DOI | Zbl

[26] Papaschinopoulos, G.; Stefanidou, G. Asymptotic behavior of the solutions of a class of rational difference equations, Int. J. Difference Equ., Volume 5 (2010), pp. 233-249

[27] Stević, S. On a system of difference equations, Appl. Math. Comput., Volume 218 (2011), pp. 3372-3378 | DOI

[28] Stević, S.; Iričanin, B.; Šmarda, Z. Boundedness character of a fourth-order system of difference equations, Adv. Difference Equ., Volume 2015 (2015 ), pp. 1-11 | DOI

[29] Yalçinkaya, I. On the global asymptotic stability of a second-order system of difference equations, Discrete Dyn. Nat. Soc., Volume 2008 (2008), pp. 1-12

[30] Yang, X.; Liu, Y.; Bai, S. On the system of high order rational difference equations \(x_{n+1} = \frac{\alpha}{ y_{n-p}}, y_{n+1} = \frac{by_{n-p}}{ x_{n-q}y_{n-p}}\), Appl. Math. Comput., Volume 171 (2005), pp. 853-856 | DOI

Cité par Sources :