Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 17-25.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose a finite difference method for the Riesz space fractional diffusion equations with delay and a nonlinear source term on a finite domain. The proposed method combines a time scheme based on the predictor-corrector method and the Crank-Nicolson scheme for the spatial discretization. The corresponding theoretical results including stability and convergence are provided. Some numerical examples are presented to validate the proposed method.
DOI : 10.22436/jnsa.011.01.03
Classification : 34K28, 65M12, 35R11, 34K37
Keywords: Riesz fractional derivative, fractional diffusion equations, Crank-Nicolson scheme, stability, convergence

Yang, Shuiping 1

1 School of Mathematics and Big Data Science, Huizhou University, Guangdong, 516007, China
@article{JNSA_2018_11_1_a2,
     author = {Yang, Shuiping},
     title = {Finite difference method for {Riesz} space fractional diffusion equations with delay and a nonlinear source term},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {17-25},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/}
}
TY  - JOUR
AU  - Yang, Shuiping
TI  - Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 17
EP  - 25
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/
DO  - 10.22436/jnsa.011.01.03
LA  - en
ID  - JNSA_2018_11_1_a2
ER  - 
%0 Journal Article
%A Yang, Shuiping
%T Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term
%J Journal of nonlinear sciences and its applications
%D 2018
%P 17-25
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/
%R 10.22436/jnsa.011.01.03
%G en
%F JNSA_2018_11_1_a2
Yang, Shuiping. Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 17-25. doi : 10.22436/jnsa.011.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/

[1] Bagley, R. L.; Torvik, P. J. Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., Volume 23 (1985), pp. 918-925 | Zbl | DOI

[2] Diethelm, K. An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., Volume 5 (1997), pp. 1-6

[3] Diethelm, K.; Ford, N. J. Numerical solution of the Bagley-Torvik equation, BIT, Volume 42 (2002), pp. 490-507 | DOI

[4] Diethelm, K.; Ford, N. J.; Freed, A. D. A predictor-Corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., Volume 29 (2002), pp. 3-22 | DOI

[5] Diethelm, K.; Walz, G. Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, Volume 16 (1997), pp. 231-253 | DOI

[6] Ichise, M.; Nagayanagi, Y.; Kojima, T. An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem., Volume 33 (1971), pp. 253-265 | DOI

[7] Kumar, D.; Agarwal, R. P.; Singh, J. A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation, J. Comput. Appl. Math. (2017) | DOI

[8] Kumar, D.; Singh, J.; Baleanu, D. A fractional model of convective radial fins with temperature-dependent thermal conductivity, Romanian Reports in Physics, Volume 2017 (2017), pp. 1-13

[9] Kumar, D; Singh, J.; Baleanu, D. Modified Kawahara equation within a fractional derivative with non-singular kernel, Therm. Sci., Volume 2017 (2017), pp. 1-10

[10] Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., Volume 166 (2004), pp. 209-219 | DOI

[11] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., Volume 191 (2007), pp. 12-20 | DOI

[12] Liu, F.; Zhuang, P.; Liu, Q.-X. Numerical methods of fractional partial differential equations and their applications, Science Press , (In Chinease), 2015

[13] Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., Volume 45 (1985), pp. 463-469 | DOI | Zbl

[14] Lubich, C. Discretized fractional calculus, SIAM J. Math. Anal., Volume 17 (1986), pp. 704-719 | DOI

[15] Magin, R. L. Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, Volume 32 (2004), pp. 1-104

[16] Meerschaert, M. M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion equations, J. Comput. Appl. Math., Volume 172 (2004), pp. 65-77 | DOI

[17] I. Podlubny Fractional Differential Equations, Academic Press, New York, 1999

[18] Singh, J.; Kumar, D.; Qurashi, M. A.; Baleanu, D. A new fractional model for giving up smoking dynamics, Adv. Difference Equ., Volume 2017 (2017), pp. 1-16 | DOI

[19] Singh, J.; Kumar, D.; Qurashi, M. A.; Baleanu, D. A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships, Entropy, Volume 2017 (2017), pp. 1-17

[20] Sun, H. H.; Abdelwahab, A.; Onaral, B. Linear approximation of transfer function with a pole of fractional order, IEEE Trans. Automat. Contr., Volume 29 (1984), pp. 441-444 | DOI

[21] Sun, H. H.; Onaral, B.; Tsao, Y. Application of positive reality principle to metal electrode linear polarization phenomena, IEEE. Trans. Biomed. Eng., Volume 31 (1984), pp. 664-674 | DOI

[22] Uchaikin, V. V.; Sibatov, R. T. Fractional theory for transport in disordered semiconductors, Commun. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 715-727 | DOI | Zbl

[23] Wu, G.-C.; Baleanu, D.; Deng, Z.-G.; Zeng, S.-D. Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI

[24] Wu, G.-C.; Baleanu, D.; Luo, W.-H. Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., Volume 314 (2017), pp. 228-236 | DOI

[25] Wu, G.-C.; Baleanu, D.; Xie, H.-P. Riesz Riemann-Liouville difference on discrete domains, Chaos, Volume 26 (2016), pp. 1-5 | Zbl | DOI

[26] Zhao, X.; Sun, Z.-Z.; Karniadakis, G. E. Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys., Volume 293 (2015), pp. 184-200 | Zbl | DOI

[27] Zhuang, P.; Liu, F.; Anh, V.; I. Turner Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., Volume 47 (2009), pp. 1760-1781 | DOI | Zbl

Cité par Sources :