Voir la notice de l'article provenant de la source International Scientific Research Publications
Yang, Shuiping 1
@article{JNSA_2018_11_1_a2, author = {Yang, Shuiping}, title = {Finite difference method for {Riesz} space fractional diffusion equations with delay and a nonlinear source term}, journal = {Journal of nonlinear sciences and its applications}, pages = {17-25}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/} }
TY - JOUR AU - Yang, Shuiping TI - Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 17 EP - 25 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/ DO - 10.22436/jnsa.011.01.03 LA - en ID - JNSA_2018_11_1_a2 ER -
%0 Journal Article %A Yang, Shuiping %T Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term %J Journal of nonlinear sciences and its applications %D 2018 %P 17-25 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/ %R 10.22436/jnsa.011.01.03 %G en %F JNSA_2018_11_1_a2
Yang, Shuiping. Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 17-25. doi : 10.22436/jnsa.011.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.03/
[1] Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., Volume 23 (1985), pp. 918-925 | Zbl | DOI
[2] An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., Volume 5 (1997), pp. 1-6
[3] Numerical solution of the Bagley-Torvik equation, BIT, Volume 42 (2002), pp. 490-507 | DOI
[4] A predictor-Corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., Volume 29 (2002), pp. 3-22 | DOI
[5] Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, Volume 16 (1997), pp. 231-253 | DOI
[6] An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem., Volume 33 (1971), pp. 253-265 | DOI
[7] A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation, J. Comput. Appl. Math. (2017) | DOI
[8] A fractional model of convective radial fins with temperature-dependent thermal conductivity, Romanian Reports in Physics, Volume 2017 (2017), pp. 1-13
[9] Modified Kawahara equation within a fractional derivative with non-singular kernel, Therm. Sci., Volume 2017 (2017), pp. 1-10
[10] Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., Volume 166 (2004), pp. 209-219 | DOI
[11] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., Volume 191 (2007), pp. 12-20 | DOI
[12] Numerical methods of fractional partial differential equations and their applications, Science Press , (In Chinease), 2015
[13] Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., Volume 45 (1985), pp. 463-469 | DOI | Zbl
[14] Discretized fractional calculus, SIAM J. Math. Anal., Volume 17 (1986), pp. 704-719 | DOI
[15] Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, Volume 32 (2004), pp. 1-104
[16] Finite difference approximations for fractional advection-dispersion equations, J. Comput. Appl. Math., Volume 172 (2004), pp. 65-77 | DOI
[17] Fractional Differential Equations, Academic Press, New York, 1999
[18] A new fractional model for giving up smoking dynamics, Adv. Difference Equ., Volume 2017 (2017), pp. 1-16 | DOI
[19] A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships, Entropy, Volume 2017 (2017), pp. 1-17
[20] Linear approximation of transfer function with a pole of fractional order, IEEE Trans. Automat. Contr., Volume 29 (1984), pp. 441-444 | DOI
[21] Application of positive reality principle to metal electrode linear polarization phenomena, IEEE. Trans. Biomed. Eng., Volume 31 (1984), pp. 664-674 | DOI
[22] Fractional theory for transport in disordered semiconductors, Commun. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 715-727 | DOI | Zbl
[23] Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI
[24] Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., Volume 314 (2017), pp. 228-236 | DOI
[25] Riesz Riemann-Liouville difference on discrete domains, Chaos, Volume 26 (2016), pp. 1-5 | Zbl | DOI
[26] Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys., Volume 293 (2015), pp. 184-200 | Zbl | DOI
[27] Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., Volume 47 (2009), pp. 1760-1781 | DOI | Zbl
Cité par Sources :