An existence theorem on Hamiltonian $(g,f)$-factors in networks
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 1-7.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $a,b$, and $r$ be nonnegative integers with $\max\{3,r+1\}\leq a$, let $G$ be a graph of order $n$, and let $g$ and $f$ be two integer-valued functions defined on $V(G)$ with $\max\{3,r+1\}\leq a\leq g(x)$ for any $x\in V(G)$. In this article, it is proved that if $n\geq\frac{(a+b-3)(a+b-5)+1}{a-1+r}$ and ${\rm bind}(G)\geq\frac{(a+b-3)(n-1)}{(a-1+r)n-(a+b-3)}$, then $G$ admits a Hamiltonian $(g,f)$-factor.
DOI : 10.22436/jnsa.011.01.01
Classification : 05C70, 05C45
Keywords: Network, graph, binding number

Zhou, Sizhong  1

1 School of Science, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
@article{JNSA_2018_11_1_a0,
     author = {Zhou, Sizhong },
     title = {An existence theorem on {Hamiltonian} \((g,f)\)-factors in networks},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-7},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     doi = {10.22436/jnsa.011.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/}
}
TY  - JOUR
AU  - Zhou, Sizhong 
TI  - An existence theorem on Hamiltonian \((g,f)\)-factors in networks
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1
EP  - 7
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/
DO  - 10.22436/jnsa.011.01.01
LA  - en
ID  - JNSA_2018_11_1_a0
ER  - 
%0 Journal Article
%A Zhou, Sizhong 
%T An existence theorem on Hamiltonian \((g,f)\)-factors in networks
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1-7
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/
%R 10.22436/jnsa.011.01.01
%G en
%F JNSA_2018_11_1_a0
Zhou, Sizhong . An existence theorem on Hamiltonian \((g,f)\)-factors in networks. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 1-7. doi : 10.22436/jnsa.011.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/

[1] Alspach, B.; Heinrich, K.; Liu, G. Z. Orthogonal factorizations of graphs, Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, New York (1992), pp. 13-40 | Zbl

[2] Cai, J.-S.; Liu, G.-Z. Binding number and Hamiltonian \((g, f)\)-factors in graphs, J. Appl. Math. Comput., Volume 25 (2007), pp. 383-388 | Zbl

[3] Gao, W. A sufficient condition for a graph to be a fractional (a, b, n)-critical deleted graph, Ars Combin., Volume 119 (2015), pp. 377-390 | Zbl

[4] Gao, W.; Wang, W.-F. Toughness and fractional critical deleted graph, Util. Math., Volume 98 (2015), pp. 295-310 | Zbl

[5] Kimura, K. \(f\)-factors, complete-factors, and component-deleted subgraphs, Discrete Math., Volume 313 (2013), pp. 1452-1463 | Zbl

[6] Kouider, M.; Ouatiki, S. Sufficient condition for the existence of an even \([a, b]\)-factor in graph, Graphs Combin., Volume 29 (2013), pp. 1051-1057 | Zbl

[7] Liu, G.-Z.; Zhu, B.-H. Some problems on factorizations with constraints in bipartite graphs, Discrete Appl. Math., Volume 128 (2003), pp. 421-434 | Zbl

[8] Lovász, L. Subgraphs with prescribed valencies, J. Combinatorial Theory, Volume 8 (1970), pp. 391-416 | Zbl

[9] Lu, H.-L.; Wang, D. G. L. On Cui-Kano’s characterization problem on graph factors, J. Graph Theory, Volume 74 (2013), pp. 335-343 | Zbl

[10] Matsuda, H. Degree conditions for Hamiltonian graphs to have \([a, b]\)-factors containing a given Hamiltonian cycle, Discrete Math., Volume 280 (2004), pp. 241-250 | Zbl | DOI

[11] Nam, Y.-S. Ore-type condition for the existence of connected factors, J. Graph Theory, Volume 56 (2007), pp. 241-248 | Zbl

[12] Woodall, D. R. The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B, Volume 15 (1973), pp. 225-255 | Zbl

[13] Zhou, S.-Z. Some new sufficient conditions for graphs to have fractional \(k\)-factors, Int. J. Comput. Math., Volume 88 (2011), pp. 484-490 | Zbl

[14] Zhou, S.-Z. A new neighborhood condition for graphs to be fractional \((k,m)\)-deleted graphs, Appl. Math. Lett., Volume 25 (2012), pp. 509-513 | Zbl

[15] Zhou, S.-Z. Toughness and the existence of Hamiltonian [a, b]-factors of graphs, Util. Math., Volume 90 (2013), pp. 187-197 | Zbl

[16] Zhou, S.-Z. Remarks on orthogonal factorizations of digraphs, Int. J. Comput. Math., Volume 91 (2014), pp. 2109-2117 | Zbl

[17] Zhou, S.-Z. Some results about component factors in graphs, RAIRO-Oper. Res. (2017) | DOI

[18] Zhou, S.-Z.; Bian, Q.-J. Subdigraphs with orthogonal factorizations of digraphs (II), European J. Combin., Volume 36 (2014), pp. 198-205 | DOI | Zbl

Cité par Sources :