Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhou, Sizhong  1
@article{JNSA_2018_11_1_a0, author = {Zhou, Sizhong }, title = {An existence theorem on {Hamiltonian} \((g,f)\)-factors in networks}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-7}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, doi = {10.22436/jnsa.011.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/} }
TY - JOUR AU - Zhou, Sizhong TI - An existence theorem on Hamiltonian \((g,f)\)-factors in networks JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1 EP - 7 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/ DO - 10.22436/jnsa.011.01.01 LA - en ID - JNSA_2018_11_1_a0 ER -
%0 Journal Article %A Zhou, Sizhong %T An existence theorem on Hamiltonian \((g,f)\)-factors in networks %J Journal of nonlinear sciences and its applications %D 2018 %P 1-7 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/ %R 10.22436/jnsa.011.01.01 %G en %F JNSA_2018_11_1_a0
Zhou, Sizhong . An existence theorem on Hamiltonian \((g,f)\)-factors in networks. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 1-7. doi : 10.22436/jnsa.011.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.01/
[1] Orthogonal factorizations of graphs, Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, New York (1992), pp. 13-40 | Zbl
[2] Binding number and Hamiltonian \((g, f)\)-factors in graphs, J. Appl. Math. Comput., Volume 25 (2007), pp. 383-388 | Zbl
[3] A sufficient condition for a graph to be a fractional (a, b, n)-critical deleted graph, Ars Combin., Volume 119 (2015), pp. 377-390 | Zbl
[4] Toughness and fractional critical deleted graph, Util. Math., Volume 98 (2015), pp. 295-310 | Zbl
[5] \(f\)-factors, complete-factors, and component-deleted subgraphs, Discrete Math., Volume 313 (2013), pp. 1452-1463 | Zbl
[6] Sufficient condition for the existence of an even \([a, b]\)-factor in graph, Graphs Combin., Volume 29 (2013), pp. 1051-1057 | Zbl
[7] Some problems on factorizations with constraints in bipartite graphs, Discrete Appl. Math., Volume 128 (2003), pp. 421-434 | Zbl
[8] Subgraphs with prescribed valencies, J. Combinatorial Theory, Volume 8 (1970), pp. 391-416 | Zbl
[9] On Cui-Kano’s characterization problem on graph factors, J. Graph Theory, Volume 74 (2013), pp. 335-343 | Zbl
[10] Degree conditions for Hamiltonian graphs to have \([a, b]\)-factors containing a given Hamiltonian cycle, Discrete Math., Volume 280 (2004), pp. 241-250 | Zbl | DOI
[11] Ore-type condition for the existence of connected factors, J. Graph Theory, Volume 56 (2007), pp. 241-248 | Zbl
[12] The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B, Volume 15 (1973), pp. 225-255 | Zbl
[13] Some new sufficient conditions for graphs to have fractional \(k\)-factors, Int. J. Comput. Math., Volume 88 (2011), pp. 484-490 | Zbl
[14] A new neighborhood condition for graphs to be fractional \((k,m)\)-deleted graphs, Appl. Math. Lett., Volume 25 (2012), pp. 509-513 | Zbl
[15] Toughness and the existence of Hamiltonian [a, b]-factors of graphs, Util. Math., Volume 90 (2013), pp. 187-197 | Zbl
[16] Remarks on orthogonal factorizations of digraphs, Int. J. Comput. Math., Volume 91 (2014), pp. 2109-2117 | Zbl
[17] Some results about component factors in graphs, RAIRO-Oper. Res. (2017) | DOI
[18] Subdigraphs with orthogonal factorizations of digraphs (II), European J. Combin., Volume 36 (2014), pp. 198-205 | DOI | Zbl
Cité par Sources :