Invariance analysis and exact solutions of some sixth-order difference equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6262-6273.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We perform a full Lie point symmetry analysis of difference equations of the form
$ u_{n+6}=\frac{u_nu_{n+4}}{u_{n+2}(A _n + B _n u_nu_{n+4})}\ , $
where the initial conditions are non-zero real numbers. Consequently, we obtain four non-trivial symmetries. Eventually, we get solutions of the difference equation for random sequences $(A_n)$ and $(B_n)$. This work is a generalization of a recent result by Khaliq and Elsayed [A. Khaliq, E. M. Elsayed, J. Nonlinear Sci. Appl., ${\bf 9}$ (2016), 1052--1063].
DOI : 10.22436/jnsa.010.12.11
Classification : 39A10, 39A99, 39A13
Keywords: Difference equation, symmetry, group invariant solutions

Nyirenda, Darlison  1 ; Folly-Gbetoula, Mensah  1

1 School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa
@article{JNSA_2017_10_12_a10,
     author = {Nyirenda, Darlison  and Folly-Gbetoula, Mensah },
     title = {Invariance analysis and exact solutions of some sixth-order difference equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6262-6273},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {2017},
     doi = {10.22436/jnsa.010.12.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/}
}
TY  - JOUR
AU  - Nyirenda, Darlison 
AU  - Folly-Gbetoula, Mensah 
TI  - Invariance analysis and exact solutions of some sixth-order difference equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 6262
EP  - 6273
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/
DO  - 10.22436/jnsa.010.12.11
LA  - en
ID  - JNSA_2017_10_12_a10
ER  - 
%0 Journal Article
%A Nyirenda, Darlison 
%A Folly-Gbetoula, Mensah 
%T Invariance analysis and exact solutions of some sixth-order difference equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 6262-6273
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/
%R 10.22436/jnsa.010.12.11
%G en
%F JNSA_2017_10_12_a10
Nyirenda, Darlison ; Folly-Gbetoula, Mensah . Invariance analysis and exact solutions of some sixth-order difference equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6262-6273. doi : 10.22436/jnsa.010.12.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/

[1] Elsayed, E. M.; Ibrahim, T. F. Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1361-1390 | Zbl | DOI

[2] Feng, G.; Yang, X.-J.; Srivasta, H. M. Exact traveling-wave solutions for linear and nonlinear heat-transfer equations, Therm. Sci., Volume 00 (2016), pp. 1-6

[3] M. Folly-Gbetoula Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = au_n/(1+bu_nu_{n+1})\), J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | DOI | Zbl

[4] Folly-Gbetoula, M.; A. H. Kara Symmetries, conservation laws, and ‘integrability’ of difference equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI

[5] Hydon, P. E. Symmetries and first integrals of ordinary difference equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 456 (2000), pp. 2835-2855 | DOI

[6] Hydon, P. E. Difference equations by differential equation methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2014

[7] T. F. Ibrahim Solving a class of three-order max-type difference equations , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 333-342 | Zbl

[8] Ibrahim, T. F.; El-Moneam, M. A. Global stability of a higher-order difference equation, Iran. J. Sci. Technol. Trans. A Sci., Volume 41 (2017), pp. 51-58 | DOI

[9] Khaliq, A.; E. M. Elsayed The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1052-1063

[10] Khan, A. Q.; Din, Q.; Qureshi, M. N.; T. F. Ibrahim Global behavior of an anti-competitive system of fourth-order rational difference equations, Comput. Ecol. Softw., Volume 4 (2014), pp. 35-46

[11] Levi, D.; Vinet, L.; Winternitz, P. Lie group formalism for difference equations, J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI

[12] S. Lie Classification und Integration von gewhnlichen Differentialgleichungen zwischen xy, die eine Gruppe von Transformationen gestatten, (German) Math. Ann., Volume 22 (1888), pp. 213-281 | DOI

[13] Morris, R.; Kara, A. H.; Chowdhury, A.; Biswas, A. Soliton solutions, conservation laws, and reductions of certain classes of nonlinearwave equations, Z. Naturforsch. A, Volume 67 (2012), pp. 613-620 | DOI

[14] Noether, E. Invariante variationsprobleme, (German) Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, Volume 1918 (1918), pp. 235-257

[15] Quispel, G. R. W.; Sahadevan, R. Lie symmetries and the integration of difference equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI

[16] Sarlet, W.; Cantrijn, F. Generalizations of Noether’s theorem in classical mechanics, SIAM Rev., Volume 23 (1981), pp. 467-494 | DOI

[17] Yang, X.-J.; Gao, F.; Srivastava, H. M. Exact traveling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., Volume 73 (2017), pp. 203-210 | Zbl | DOI

[18] Yang, X.-J.; Machado, J. A. Tenreiro; D. Baleanu Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, Volume 25 (2017), pp. 1-7 | DOI

[19] Yang, X.-J.; Machado, J. A. Tenreiro; Baleanu, D.; Cattani, C. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI | Zbl

Cité par Sources :