Voir la notice de l'article provenant de la source International Scientific Research Publications
$ u_{n+6}=\frac{u_nu_{n+4}}{u_{n+2}(A _n + B _n u_nu_{n+4})}\ , $ |
Nyirenda, Darlison  1 ; Folly-Gbetoula, Mensah  1
@article{JNSA_2017_10_12_a10, author = {Nyirenda, Darlison and Folly-Gbetoula, Mensah }, title = {Invariance analysis and exact solutions of some sixth-order difference equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {6262-6273}, publisher = {mathdoc}, volume = {10}, number = {12}, year = {2017}, doi = {10.22436/jnsa.010.12.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/} }
TY - JOUR AU - Nyirenda, Darlison AU - Folly-Gbetoula, Mensah TI - Invariance analysis and exact solutions of some sixth-order difference equations JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 6262 EP - 6273 VL - 10 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/ DO - 10.22436/jnsa.010.12.11 LA - en ID - JNSA_2017_10_12_a10 ER -
%0 Journal Article %A Nyirenda, Darlison %A Folly-Gbetoula, Mensah %T Invariance analysis and exact solutions of some sixth-order difference equations %J Journal of nonlinear sciences and its applications %D 2017 %P 6262-6273 %V 10 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/ %R 10.22436/jnsa.010.12.11 %G en %F JNSA_2017_10_12_a10
Nyirenda, Darlison ; Folly-Gbetoula, Mensah . Invariance analysis and exact solutions of some sixth-order difference equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6262-6273. doi : 10.22436/jnsa.010.12.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.11/
[1] Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1361-1390 | Zbl | DOI
[2] Exact traveling-wave solutions for linear and nonlinear heat-transfer equations, Therm. Sci., Volume 00 (2016), pp. 1-6
[3] Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = au_n/(1+bu_nu_{n+1})\), J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | DOI | Zbl
[4] Symmetries, conservation laws, and ‘integrability’ of difference equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI
[5] Symmetries and first integrals of ordinary difference equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 456 (2000), pp. 2835-2855 | DOI
[6] Difference equations by differential equation methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2014
[7] Solving a class of three-order max-type difference equations , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 333-342 | Zbl
[8] Global stability of a higher-order difference equation, Iran. J. Sci. Technol. Trans. A Sci., Volume 41 (2017), pp. 51-58 | DOI
[9] The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1052-1063
[10] Global behavior of an anti-competitive system of fourth-order rational difference equations, Comput. Ecol. Softw., Volume 4 (2014), pp. 35-46
[11] Lie group formalism for difference equations, J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI
[12] Classification und Integration von gewhnlichen Differentialgleichungen zwischen xy, die eine Gruppe von Transformationen gestatten, (German) Math. Ann., Volume 22 (1888), pp. 213-281 | DOI
[13] Soliton solutions, conservation laws, and reductions of certain classes of nonlinearwave equations, Z. Naturforsch. A, Volume 67 (2012), pp. 613-620 | DOI
[14] Invariante variationsprobleme, (German) Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, Volume 1918 (1918), pp. 235-257
[15] Lie symmetries and the integration of difference equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI
[16] Generalizations of Noether’s theorem in classical mechanics, SIAM Rev., Volume 23 (1981), pp. 467-494 | DOI
[17] Exact traveling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., Volume 73 (2017), pp. 203-210 | Zbl | DOI
[18] Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, Volume 25 (2017), pp. 1-7 | DOI
[19] On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI | Zbl
Cité par Sources :