An LQP-SQP alternating direction method for solving variational inequality problems with separable structure
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6246-6261.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, by combining the logarithmic-quadratic proximal (LQP) method and the square quadratic proximal (SQP) method, we propose an inexact alternating direction method for solving constrained variational inequalities $VI(S,f),$ where $S$ is a convex set with linear constraints. Under certain conditions, the global convergence of the proposed method is established. We show the O(1/t) convergence rate for the inexact LQP-SQP alternating direction method. To demonstrate the efficiency of the proposed method, we provide numerical results for traffic equilibrium problems.
DOI : 10.22436/jnsa.010.12.10
Classification : 90C33, 49J405
Keywords: Proximal point algorithm, logarithmic-quadratic proximal method, square quadratic proximal, variational inequality, prediction-correction, traffic equilibrium problems

Alhomaidan, Adnan  1 ; Bnouhachem, Abdellah  2 ; Latif, Abdul  1

1 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Laboratoire d'Ingénierie des Systèmes et Technologies de l'Information, Ibn Zohr University, Agadir, BP 1136, Morocco
@article{JNSA_2017_10_12_a9,
     author = {Alhomaidan, Adnan  and Bnouhachem, Abdellah  and Latif, Abdul },
     title = {An {LQP-SQP} alternating direction method for solving variational inequality problems with separable structure},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6246-6261},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {2017},
     doi = {10.22436/jnsa.010.12.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.10/}
}
TY  - JOUR
AU  - Alhomaidan, Adnan 
AU  - Bnouhachem, Abdellah 
AU  - Latif, Abdul 
TI  - An LQP-SQP alternating direction method for solving variational inequality problems with separable structure
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 6246
EP  - 6261
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.10/
DO  - 10.22436/jnsa.010.12.10
LA  - en
ID  - JNSA_2017_10_12_a9
ER  - 
%0 Journal Article
%A Alhomaidan, Adnan 
%A Bnouhachem, Abdellah 
%A Latif, Abdul 
%T An LQP-SQP alternating direction method for solving variational inequality problems with separable structure
%J Journal of nonlinear sciences and its applications
%D 2017
%P 6246-6261
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.10/
%R 10.22436/jnsa.010.12.10
%G en
%F JNSA_2017_10_12_a9
Alhomaidan, Adnan ; Bnouhachem, Abdellah ; Latif, Abdul . An LQP-SQP alternating direction method for solving variational inequality problems with separable structure. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6246-6261. doi : 10.22436/jnsa.010.12.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.10/

[1] Al-Mazrooei, A. E.; Latif, A.; Yao, J. C. Solving generalized mixed equilibria, variational inequalities, and constrained convex minimization, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-26

[2] Auslender, A.; Teboulle, M.; Ben-Tiba, S. A logarithmic-quadratic proximal method for variational inequalities, Computational optimization–a tribute to Olvi Mangasarian, Part I, Comput. Optim. Appl., Volume 12 (1999), pp. 31-40 | DOI

[3] Bnouhachem, A. On LQP alternating direction method for solving variational inequality problems with separable structure, J. Inequal. Appl., Volume 2014 (2014), pp. 1-15 | Zbl | DOI

[4] Bnouhachem, A.; Q. H. Ansari A descent LQP alternating direction method for solving variational inequality problems with separable structure, Appl. Math. Comput., Volume 246 (2014), pp. 519-532 | Zbl | DOI

[5] Bnouhachem, A.; Benazza, H.; Khalfaoui, M. An inexact alternating direction method for solving a class of structured variational inequalities , Appl. Math. Comput., Volume 219 (2013), pp. 7837-7846 | DOI

[6] Bnouhachem, A.; A. Hamdi Parallel LQP alternating direction method for solving variational inequality problems with separable structure, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14 | DOI | Zbl

[7] Bnouhachem, A.; Latif, A.; Q. H. Ansari On the \(O(1/t)\) convergence rate of the alternating direction method with LQP regularization for solving structured variational inequality problems, J. Inequal. Appl., Volume 2016 (2016), pp. 1-14 | Zbl | DOI

[8] Bnouhachem, A.; Xu, M. H. An inexact LQP alternating direction method for solving a class of structured variational inequalities, Comput. Math. Appl., Volume 67 (2014), pp. 671-680 | Zbl | DOI

[9] Ceng, L.-C.; Latif, A.; J.-C. Yao On solutions of a system of variational inequalities and fixed point problems in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-34 | Zbl | DOI

[10] Facchinei, F.; J.-S. Pang Finite-dimensional variational inequalities and complementarity problems, Vol. I and II, Springer Series in Operations Research, Springer-Verlag, New York, 2003

[11] Fu, X.-L.; A. Bnouhachem An self-adaptive LQP method for constrained variational inequalities, Appl. Math. Comput., Volume 189 (2007), pp. 1586-1600 | DOI | Zbl

[12] R. Glowinski Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984 | DOI

[13] Glowinski, R.; Tallec, P. Le Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989 | DOI

[14] He, H.-J.; Wang, K.; Cai, X.-J.; D.-R. Han An LQP-based two-step method for structured variational inequalities, J. Oper. Res. Soc. China, Volume 5 (2017), pp. 301-317 | DOI | Zbl

[15] He, B.-S.; Xu, Y.; Yuan, X.-M. A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities, Comput. Optim. Appl., Volume 35 (2006), pp. 19-46 | Zbl | DOI

[16] He, B.-S.; Yang, H.; S.-L.Wang Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl., Volume 106 (2000), pp. 337-356 | Zbl | DOI

[17] He, B.-S.; Zhou, J. A modified alternating direction method for convex minimization problems , App. Math. Lett., Volume 13 (2000), pp. 123-130 | Zbl | DOI

[18] Jiang, Z.-K.; Bnouhachem, A. A projection-based prediction-correction method for structured monotone variational inequalities, Appl. Math. Comput., Volume 202 (2008), pp. 747-759 | DOI | Zbl

[19] Kontogiorgis, S.; Meyer, R. R. A variable-penalty alternating directions method for convex optimization , Math. Programming, Volume 83 (1998), pp. 29-53 | DOI | Zbl

[20] Latif, A.; Ceng, L.-C.; Q. H. Ansari Multi-step hybrid viscosity method for systems of variational inequalities defined over sets of solutions of an equilibrium problem and fixed point problems , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-26 | Zbl | DOI

[21] Latif, A.; Luc, D. T. Variational relation problems: existence of solutions and fixed points of contraction mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[22] M. Li A hybrid LQP-based method for structured variational inequalities, Int. J. Comput. Math., Volume 89 (2012), pp. 1412-1425 | Zbl | DOI

[23] Tao, M.; X.-M. Yuan On the \(O(1/t)\) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization, SIAM J. Optim., Volume 22 (2012), pp. 1431-1448 | DOI | Zbl

[24] Teboulle, M. Convergence of proximal-like algorithms , SIAM J. Optim., Volume 7 (1997), pp. 1069-1083 | DOI

[25] Yuan, X.-M.; Li, M. An LQP-based decomposition method for solving a class of variational inequalities, SIAM J. Optim., Volume 21 (2011), pp. 1309-1318 | DOI | Zbl

Cité par Sources :