Inequalities for new class of fractional integral operators
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6166-6176.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The applications of fractional order integrals have promoted the study of inequalities. In this paper, we utilize recently introduced left- and right-fractional conformable integrals (FCI) for a class of decreasing $n$ positive functions such that $n\in N$, for the generalization of existing integral inequalities. Our results have the potentials to be used for the investigation of positive solutions of different classes of fractional differential equations.
DOI : 10.22436/jnsa.010.12.04
Classification : 26D10, 26A33
Keywords: Fractional integral inequalities, left-fractional conformable integral, right-fractional conformable integral

Khan, Hasib  1 ; Sun, Hongguang  2 ; Chen, Wen  2 ; Baleanu, Dumitru  3

1 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China;Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir Upper, 18000, Khyber Pakhtunkhwa, Pakistan
2 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China
3 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China;Department of Mathematics, Cankaya University, 06530 Ankara, Turkey;Institute of Space Sciences, P. O. BOX, MG-23, 76900 Magrrele-Bucharest, Romania
@article{JNSA_2017_10_12_a3,
     author = {Khan, Hasib  and Sun, Hongguang  and Chen, Wen  and Baleanu, Dumitru },
     title = {Inequalities for new class of fractional integral operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6166-6176},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {2017},
     doi = {10.22436/jnsa.010.12.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.04/}
}
TY  - JOUR
AU  - Khan, Hasib 
AU  - Sun, Hongguang 
AU  - Chen, Wen 
AU  - Baleanu, Dumitru 
TI  - Inequalities for new class of fractional integral operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 6166
EP  - 6176
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.04/
DO  - 10.22436/jnsa.010.12.04
LA  - en
ID  - JNSA_2017_10_12_a3
ER  - 
%0 Journal Article
%A Khan, Hasib 
%A Sun, Hongguang 
%A Chen, Wen 
%A Baleanu, Dumitru 
%T Inequalities for new class of fractional integral operators
%J Journal of nonlinear sciences and its applications
%D 2017
%P 6166-6176
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.04/
%R 10.22436/jnsa.010.12.04
%G en
%F JNSA_2017_10_12_a3
Khan, Hasib ; Sun, Hongguang ; Chen, Wen ; Baleanu, Dumitru . Inequalities for new class of fractional integral operators. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6166-6176. doi : 10.22436/jnsa.010.12.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.04/

[1] Abdeljawad, T. On conformable fractional calculus, J. Comput. Appl. Math., Volume 279 (2015), pp. 57-66 | DOI

[2] Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., Volume 2017 (2017), pp. 1-10 | DOI | Zbl

[3] Agarwal, R. P.; A. Özbekler Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term , J. Comput. Appl. Math., Volume 314 (2017), pp. 69-78 | Zbl | DOI

[4] Băleanu, D.; Agarwal, R. P.; Khan, H.; Khan, R. A.; H. Jafari On the existence of solution for fractional differential equations of order \(3 < \delta\leq 4\), Adv. Difference Equ., Volume 2015 (2015), pp. 1-9 | DOI

[5] Băleanu, D.; Agarwal, R. P.; Mohammadi, H.; Rezapour, S. Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., Volume 2013 (2013), pp. 1-8 | DOI | Zbl

[6] Băleanu, D.; Khan, H.; Jafari, H.; Khan, R. A.; Alipour, M. On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14 | DOI

[7] Băleanu, D.; Mustafa, O. G. On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1835-1841 | DOI

[8] Băleanu, D.; Mustafa, O. G.; Agarwal, R. P. An existence result for a superlinear fractional differential equation, Appl. Math. Lett., Volume 23 (2010), pp. 1129-1132 | Zbl | DOI

[9] Băleanu, D.; Mustafa, O. G.; Agarwal, R. P. On the solution set for a class of sequential fractional differential equations, J. Phys., Volume 2010 (2010), pp. 1-7 | Zbl | DOI

[10] Bolandtalat, A.; Babolian, E.; Jafari, H. Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials, Open Phys., Volume 14 (2016), pp. 226-230 | DOI

[11] Debbouche, A.; V. Antonov Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives, Nonlinear Studies, Volume 24 (2017), pp. 527-535 | Zbl

[12] Jafari, H.; Jassim, H. K; Moshokoa, S. P.; Ariyan, V. M.; F. Tchier Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mechanical Eng., Volume 2016 (2016), pp. 1-6 | DOI

[13] Jafari, H.; Jassim, H. K.; Tchier, F.; D. Baleanu On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators, Entropy, Volume 2016 (2016), pp. 1-12

[14] Jarad, F.; Uğurlu, E.; Abdeljawad, T.; D. Baleanu On a new class of fractional operators, Adv. Difference Equ., Volume 2017 (2017), pp. 1-16 | DOI

[15] Jleli, M.; Kirane, M.; B. Samet Hartman-Winter-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn Nat Soc., Volume 2017 (2017), pp. 1-8 | DOI

[16] Khalil, H.; Shah, K.; Khan, R. A. Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progress Frac. Differ. Equ. Appl., Volume 2 (2016), pp. 31-39

[17] Khan, H.; Jafari, H.; Baleanu, D.; Khan, R. A.; A. Khan On iterative solutions and error estimations of a coupled system of fractional order differential-integral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., Volume 2017 (2017), pp. 1-13 | DOI

[18] Khan, H.; Li, Y.; Chen, W.; Baleanu, D.; A. Khan Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator , Bound. value Probl., Volume 2017 (2017), pp. 1-16 | Zbl | DOI

[19] Khan, A.; Li, Y.; Shah, K.; T. S. Khan On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, Volume 2017 (2017), pp. 1-9 | DOI | Zbl

[20] Li, Y.; Shah, K.; Khan, R. A. Iterative technique for coupled integral boundary value problem of non-linear of non-integer order differential equations, Adv. Difference Equ., Volume 2017 (2017), pp. 1-14 | DOI

[21] Liu, W.; Ngo, Q. A.; V. N. Huy Several interesting integral inequalities , J. Math. Inequal., Volume 3 (2009), pp. 201-212 | DOI

[22] Neito, X.-J.; Machado, J. A. T.; Nieto, J. J. A new family of the local fractional PDEs , Fund. Inform., Volume 151 (2017), pp. 63-75 | Zbl | DOI

[23] O’Regan, D.; B. Samet Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl. , Volume 2015 (2015), pp. 1-10 | Zbl | DOI

[24] Sarikaya, M. Z.; H. Budak Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 1527-1538

[25] Set, E.; Noor, M. A.; Awan, M. U.; A. Gözpinar Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., Volume 2017 (2017), pp. 1-10 | DOI

[26] Set, E.; Tomar, M.; Sarikaya, M. Z. On fractional Gruss type inequalities for k-fractional integrals, Appl. Math. Comput., Volume 269 (2015), pp. 29-34 | DOI

[27] Shah, K.; R. A. Khan Study of solution to a toppled system of fractional Differential Equations with integral boundary conditions , Int. J. Appl. Comput. Math., Volume 3 (2017), pp. 2369-2388 | DOI

[28] Sun, H.-G.; Zhang, Y.; Chen, W.; Reeves, D. M. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contaminant Hydrology, Volume 157 (2014), pp. 47-58 | DOI

[29] Tian, Y.; Fan, M.; Sun, Y. Certain nonlinear integral inequalities and their applications, Discrete Dyn. Nat. Soc., Volume 2017 (2017), pp. 1-8 | DOI

[30] Tunç, M. On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, Volume 27 (2013), pp. 559-565 | DOI | Zbl

[31] Yang, X. -J. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., Volume 21 (2016), pp. 1161-1171 | DOI

[32] Yang, X.; K. Lo Lyapunov-type inequality for a class of even order differential equations, Appl. Math. Comput., Volume 215 (2010), pp. 3884-3890 | DOI

[33] Yang, X.-J.; Machao, J. A. T.; Baleanu, D. Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Romanian Reports in Physics, Volume 2017 (2017), pp. 1-19

[34] Yang, X.-J.; Srivastava, H. M.; Machado, J. A. T. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., Volume 20 (2016), pp. 753-756 | DOI

Cité par Sources :