Wavelet thresholding estimator on $B_{p,q}^s(\mathbb{R}^n)$
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6149-6158.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper deals with the convergence of the wavelet thresholding estimator on Besov spaces $B_{p,q}^s(\mathbb{R}^n)$. We show firstly the equivalence of several Besov norms. It seems different with one dimensional case. Then we provide two convergence theorems for the wavelet thresholding estimator, which extend Liu and Wang's work [Y.-M. Liu, H.-Y. Wang, Appl. Comput. Harmon. Anal., ${\bf 32}$ (2012), 342--356].
DOI : 10.22436/jnsa.010.12.02
Classification : 42C40, 35Q30, 41A15
Keywords: Wavelet thresholding estimator, Besov spaces, convergence

Zhao, Junjian  1 ; Zhuang, Zhitao  2

1 Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin 300387, China
2 School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
@article{JNSA_2017_10_12_a1,
     author = {Zhao, Junjian  and Zhuang, Zhitao },
     title = {Wavelet thresholding estimator on {\(B_{p,q}^s(\mathbb{R}^n)\)}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6149-6158},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {2017},
     doi = {10.22436/jnsa.010.12.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/}
}
TY  - JOUR
AU  - Zhao, Junjian 
AU  - Zhuang, Zhitao 
TI  - Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 6149
EP  - 6158
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/
DO  - 10.22436/jnsa.010.12.02
LA  - en
ID  - JNSA_2017_10_12_a1
ER  - 
%0 Journal Article
%A Zhao, Junjian 
%A Zhuang, Zhitao 
%T Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\)
%J Journal of nonlinear sciences and its applications
%D 2017
%P 6149-6158
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/
%R 10.22436/jnsa.010.12.02
%G en
%F JNSA_2017_10_12_a1
Zhao, Junjian ; Zhuang, Zhitao . Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\). Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6149-6158. doi : 10.22436/jnsa.010.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/

[1] Beylkin, G. Wavelets and fast numerical algorithms , Different perspectives on wavelets, San Antonio, TX, (1993), Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, Volume 47 (1993), pp. 89-117

[2] Chen, D.-R.; Meng, H.-T. Convergence of wavelet thresholding estimators of differential operators, Appl. Comput. Harmon. Anal., Volume 25 (2008), pp. 266-275 | DOI | Zbl

[3] Chesneau, C. Regression with random design: a minimax study , Statist. Probab. Lett., Volume 77 (2007), pp. 40-53 | DOI | Zbl

[4] Chesneau, C.; Fadili, J.; B. Maillot Adaptive estimation of an additive regression function from weakly dependent data, J. Multivariate Anal., Volume 133 (2015), pp. 77-94 | Zbl | DOI

[5] Cohen, A. Wavelet methods in numerical analysis, Handbook of numerical analysis, Handb. Numer. Anal., North- Holland, Amsterdam, VII (2000), pp. 417-711 | DOI

[6] I. Daubechies Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 | DOI

[7] Donoho, D. L.; Johnstone, I. M. Ideal spatial adaptation by wavelet shrinkage , Biometrika, Volume 81 (1994), pp. 425-455 | Zbl | DOI

[8] Härdle, W.; Kerkyacharian, G.; Picard, D.; A. Tsybakov Wavelets, approximation, and statistical applications , Lecture Notes in Statistics, Springer-Verlag, New York, 1998 | DOI | Zbl

[9] Kelly, S.; Kon, M. A.; L. A. Raphael Local convergence for wavelet expansions, J. Funct. Anal., Volume 126 (1994), pp. 102-138 | DOI

[10] Liu, Y.-M.; Wang, H.-Y. Convergence order of wavelet thresholding estimator for differential operators on Besov spaces, Appl. Comput. Harmon. Anal., Volume 32 (2012), pp. 342-356 | Zbl | DOI

[11] Liu, Y.-M.; Zhao, J.-J. An extension of Bittner and Urban’s theorem, Math. Comp., Volume 82 (2013), pp. 401-411 | DOI | Zbl

[12] Tao, T. On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal., Volume 3 (1996), pp. 384-387 | Zbl | DOI

[13] Tao, T.; Vidakovic, B. Almost everywhere behavior of general wavelet shrinkage operators, Appl. Comput. Harmon. Anal., Volume 9 (2000), pp. 72-82 | DOI | Zbl

[14] H. Triebel Theory of function spaces, II, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1992

[15] Triebel, H. Theory of function spaces, III, Monographs in Mathematics, Birkhäuser Verlag, Basel, 2006

Cité par Sources :