Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhao, Junjian  1 ; Zhuang, Zhitao  2
@article{JNSA_2017_10_12_a1, author = {Zhao, Junjian and Zhuang, Zhitao }, title = {Wavelet thresholding estimator on {\(B_{p,q}^s(\mathbb{R}^n)\)}}, journal = {Journal of nonlinear sciences and its applications}, pages = {6149-6158}, publisher = {mathdoc}, volume = {10}, number = {12}, year = {2017}, doi = {10.22436/jnsa.010.12.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/} }
TY - JOUR AU - Zhao, Junjian AU - Zhuang, Zhitao TI - Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\) JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 6149 EP - 6158 VL - 10 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/ DO - 10.22436/jnsa.010.12.02 LA - en ID - JNSA_2017_10_12_a1 ER -
%0 Journal Article %A Zhao, Junjian %A Zhuang, Zhitao %T Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\) %J Journal of nonlinear sciences and its applications %D 2017 %P 6149-6158 %V 10 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/ %R 10.22436/jnsa.010.12.02 %G en %F JNSA_2017_10_12_a1
Zhao, Junjian ; Zhuang, Zhitao . Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\). Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6149-6158. doi : 10.22436/jnsa.010.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.02/
[1] Wavelets and fast numerical algorithms , Different perspectives on wavelets, San Antonio, TX, (1993), Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, Volume 47 (1993), pp. 89-117
[2] Convergence of wavelet thresholding estimators of differential operators, Appl. Comput. Harmon. Anal., Volume 25 (2008), pp. 266-275 | DOI | Zbl
[3] Regression with random design: a minimax study , Statist. Probab. Lett., Volume 77 (2007), pp. 40-53 | DOI | Zbl
[4] Adaptive estimation of an additive regression function from weakly dependent data, J. Multivariate Anal., Volume 133 (2015), pp. 77-94 | Zbl | DOI
[5] Wavelet methods in numerical analysis, Handbook of numerical analysis, Handb. Numer. Anal., North- Holland, Amsterdam, VII (2000), pp. 417-711 | DOI
[6] Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 | DOI
[7] Ideal spatial adaptation by wavelet shrinkage , Biometrika, Volume 81 (1994), pp. 425-455 | Zbl | DOI
[8] Wavelets, approximation, and statistical applications , Lecture Notes in Statistics, Springer-Verlag, New York, 1998 | DOI | Zbl
[9] Local convergence for wavelet expansions, J. Funct. Anal., Volume 126 (1994), pp. 102-138 | DOI
[10] Convergence order of wavelet thresholding estimator for differential operators on Besov spaces, Appl. Comput. Harmon. Anal., Volume 32 (2012), pp. 342-356 | Zbl | DOI
[11] An extension of Bittner and Urban’s theorem, Math. Comp., Volume 82 (2013), pp. 401-411 | DOI | Zbl
[12] On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal., Volume 3 (1996), pp. 384-387 | Zbl | DOI
[13] Almost everywhere behavior of general wavelet shrinkage operators, Appl. Comput. Harmon. Anal., Volume 9 (2000), pp. 72-82 | DOI | Zbl
[14] Theory of function spaces, II, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1992
[15] Theory of function spaces, III, Monographs in Mathematics, Birkhäuser Verlag, Basel, 2006
Cité par Sources :