Some new integral inequalities for $n$-times differentiable convex and concave functions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6141-6148.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, by using an integral identity together with both the Holder and the Power-mean integral inequalities we establish several new inequalities for $n$-times differentiable convex and concave mappings.
DOI : 10.22436/jnsa.010.12.01
Classification : 26A51, 26D10, 26D15
Keywords: Convex function, concave function, Holder integral inequality, power-mean integral inequality

Maden, Selahattin  1 ; Kadakal, Huriye  2 ; Kadakal, Mahir  3 ; İscan, İmdat 3

1 Department of Mathematics, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey
2 Institute of Science, Ordu University, Ordu, Turkey
3 Department of Mathematics, Faculty of Sciences and Arts, Giresun University, Giresun, Turkey
@article{JNSA_2017_10_12_a0,
     author = {Maden, Selahattin  and Kadakal, Huriye  and Kadakal, Mahir  and \.Iscan,  \.Imdat},
     title = {Some new integral inequalities for \(n\)-times differentiable convex and concave functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6141-6148},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {2017},
     doi = {10.22436/jnsa.010.12.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.01/}
}
TY  - JOUR
AU  - Maden, Selahattin 
AU  - Kadakal, Huriye 
AU  - Kadakal, Mahir 
AU  - İscan,  İmdat
TI  - Some new integral inequalities for \(n\)-times differentiable convex and concave functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 6141
EP  - 6148
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.01/
DO  - 10.22436/jnsa.010.12.01
LA  - en
ID  - JNSA_2017_10_12_a0
ER  - 
%0 Journal Article
%A Maden, Selahattin 
%A Kadakal, Huriye 
%A Kadakal, Mahir 
%A İscan,  İmdat
%T Some new integral inequalities for \(n\)-times differentiable convex and concave functions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 6141-6148
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.01/
%R 10.22436/jnsa.010.12.01
%G en
%F JNSA_2017_10_12_a0
Maden, Selahattin ; Kadakal, Huriye ; Kadakal, Mahir ; İscan,  İmdat. Some new integral inequalities for \(n\)-times differentiable convex and concave functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 12, p. 6141-6148. doi : 10.22436/jnsa.010.12.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.12.01/

[1] Alomari, M.; Darus, M.; S. S. Dragomir New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math., Volume 41 (2010), pp. 353-359 | Zbl

[2] Bai, S.-P.; Wang, S.-H.; F. Qi Some Hermite-Hadamard type inequalities for n-time differentiable (\(\alpha,m\))-convex functions, J. Inequal. Appl., Volume 2012 (2012), pp. 1-11 | DOI | Zbl

[3] Cerone, P.; Dragomir, S. S.; Roumeliotis, J. Some Ostrowski type inequalities for n-time differentiable mappings and applications , Demonstratio Math., Volume 32 (1999), pp. 697-712 | Zbl | DOI

[4] Cerone, P.; Dragomir, S. S.; Roumeliotis, J.; J. Sunde A new generalization of the trapezoid formula for n-time differentiable mappings and applications, Demonstratio Math., Volume 33 (2000), pp. 719-736 | DOI | Zbl

[5] Dragomir, S. S.; Pearce, C. E. M. Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University, Australia, 2000

[6] D.-Y. Hwang Some Inequalities for n-time Differentiable Mappings and Applications, Kyungpook Math. J., Volume 43 (2003), pp. 335-343 | Zbl

[7] İ. İşcan Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., Volume 43 (2014), pp. 935-942

[8] İşcan, İ. Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., Volume 4 (2016), pp. 140-150 | DOI

[9] İşcan, İ.; M. Kunt Hermite-Hadamard-Fejer type inequalities for harmonically quasi-convex functions via fractional integrals, Kyungpook Math. J., Volume 56 (2016), pp. 845-859 | DOI | Zbl

[10] İşcan, İ.; M. Kunt Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, J. Math., Volume 2016 (2016), pp. 1-7 | DOI

[11] İşcan, İ.; S. Turhan Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral, Moroccan J. Pure Appl. Anal., Volume 2 (2016), pp. 34-46 | DOI

[12] İşcan, İ.; Turhan, S.; Maden, S. Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via Fractional Integral , New Trends Math. Sci., Volume 4 (2016), pp. 1-10 | DOI

[13] Jiang, W.-D.; Niu, D.-W.; Hua, Y.; Qi, F. Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s-convex in the second sense, Analysis (Munich), Volume 32 (2012), pp. 209-220 | Zbl | DOI

[14] Kirmaci, U. S.; Bakula, M. K.; Özdemir, M. E.; Pečarić, J. Hadamard-type inequalities for s-convex functions, Appl. Math. Comp., Volume 193 (2007), pp. 26-35 | DOI

[15] Özdemir, M. E.; Yıldız, Ç. New Inequalities for Hermite-Hadamard and Simpson Type with Applications, Tamkang J. Math., Volume 44 (2013), pp. 209-216 | DOI | Zbl

[16] Pečarić, J. E.; Porschan, F.; Tong, Y. L. Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992

[17] Wang, S.-H.; Xi, B.-Y.; F. Qi Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), Volume 32 (2012), pp. 247-262 | Zbl | DOI

[18] Xi, B.-Y.; F. Qi Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means , J. Funct. Spaces Appl., Volume 2012 (2012), pp. 1-14

[19] Yıldız, Ç. New inequalities of the Hermite-Hadamard type for n-time differentiable functions which are quasiconvex , J. Math. Inequal., Volume 10 (2016), pp. 703-711 | Zbl

Cité par Sources :