Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5744-5752.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is devoted to consider the existence of solutions for a class of nonlinear Caputo-Hadamard fractional differential equations with integral terms ((CHFDE), for short). Firstly, by applying the semi-group property of Hadamard fractional integral operator, a necessary condition of solvability for (CHFDE) is established. Then, under the suitable conditions, we prove the solution set of (CHFDE) is nonempty by using the method of upper and lower solutions, and Arzel\`{a}-Ascoli theorem. Finally, we present several numerical examples to explicate the main results.
DOI : 10.22436/jnsa.010.11.12
Classification : 49J53, 49K40, 90C33, 90C46
Keywords: Caputo-Hadamard derivative, fractional differential equations, upper and lower solutions, monotone sequences, Arzela-Ascoli theorem

Bai, Yunru  1 ; Kong, Hua  2

1 Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Krakow, Poland;Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China
2 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China
@article{JNSA_2017_10_11_a11,
     author = {Bai, Yunru  and Kong, Hua },
     title = {Existence of solutions for nonlinear {Caputo-Hadamard} fractional  differential equations via the method of upper and lower solutions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5744-5752},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/}
}
TY  - JOUR
AU  - Bai, Yunru 
AU  - Kong, Hua 
TI  - Existence of solutions for nonlinear Caputo-Hadamard fractional  differential equations via the method of upper and lower solutions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5744
EP  - 5752
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/
DO  - 10.22436/jnsa.010.11.12
LA  - en
ID  - JNSA_2017_10_11_a11
ER  - 
%0 Journal Article
%A Bai, Yunru 
%A Kong, Hua 
%T Existence of solutions for nonlinear Caputo-Hadamard fractional  differential equations via the method of upper and lower solutions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5744-5752
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/
%R 10.22436/jnsa.010.11.12
%G en
%F JNSA_2017_10_11_a11
Bai, Yunru ; Kong, Hua . Existence of solutions for nonlinear Caputo-Hadamard fractional  differential equations via the method of upper and lower solutions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5744-5752. doi : 10.22436/jnsa.010.11.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/

[1] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Fractional calculus, Models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012 | Zbl

[2] Butzer, P. L.; Kilbas, A. A.; Trujillo, J. J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., Volume 269 (2002), pp. 1-27 | Zbl | DOI

[3] Chen, W.; Sun, H.-G.; Zhang, X.-D.; Korošak, D. Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., Volume 59 (2010), pp. 1754-1758 | Zbl | DOI

[4] Chen, F.-L.; Zhou, Y. Attractivity of fractional functional differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 1359-1369 | DOI

[5] Chen, R.; S.-M. Zhou Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator, Nonlinear Anal. Real World Appl., Volume 33 (2017), pp. 121-138 | Zbl | DOI

[6] Fiscella, A.; Pucci, P. p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., Volume 35 (2017), pp. 350-378 | Zbl | DOI

[7] Gambo, Y. Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ., Volume 2014 (2014), pp. 1-12 | DOI | Zbl

[8] (Ed.), R. Hilfer Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI

[9] Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ., Volume 2012 (2012), pp. 1-8 | DOI | Zbl

[10] Kilbas, A. A.; Srivastava, H. M.; J. J. Trujillo Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[11] Kubica, A.; Rybka, P.; Ryszewska, K. Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Anal. Real World Appl., Volume 36 (2017), pp. 154-182 | DOI | Zbl

[12] Li, C.-P.; Zeng, F.-H. Numerical methods for fractional calculus, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2015

[13] Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., Volume 12 (2009), pp. 409-422

[14] R. L. Magin Fractional calculus in bioengineering, Begell House, Redding, 2006

[15] Mainardi, F. Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models, Imperial College Press, London, 2010 | DOI

[16] Pan, N.; Zhang, B.-L.; Cao, J. Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian, Nonlinear Anal. Real World Appl., Volume 37 (2017), pp. 56-70 | Zbl | DOI

[17] Podlubny, I. Fractional differential equations , An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[18] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional integrals and derivatives , Theory and applications, Edited and with a foreword by S. M. Nikol’skiı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[19] Sun, H.-G.; Chen, W.; Li, C.-P.; Chen, Y.-Q. Finite difference schemes for variable-order time fractional diffusion equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-16 | Zbl | DOI

[20] Sun, H.-G.; Chen, W.; Wei, H.; Chen, Y.-Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J., Volume 193 (2011), pp. 185-192 | DOI

[21] Tao, F.; Wu, X. Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. Real World Appl., Volume 35 (2017), pp. 158-174 | Zbl | DOI

[22] Wu, G.-C.; Baleanu, D.; Deng, Z.-G.; Zeng, S.-D. Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI

[23] Wu, G.-C.; Baleanu, D.; Zeng, S.-D. Discrete chaos in fractional sine and standard maps, Phys. Lett. A, Volume 378 (2014), pp. 484-487 | DOI | Zbl

[24] X.-J. Yang A new integral transform operator for solving the heat-diffusion problem, Appl. Math. Lett., Volume 64 (2017), pp. 193-197 | Zbl | DOI

[25] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016 | DOI | Zbl

[26] Yang, X.-J.; Machado, J. A. T. A new fractional operator of variable order: application in the description of anomalous diffusion , Phys. A, Volume 418 (2017), pp. 276-283 | DOI

[27] E. Zeidler Nonlinear functional analysis and its applications, II/B, Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron, Springer-Verlag, New York, 1990 | Zbl | DOI

[28] Zeng, S.-D.; Baleanu, D.; Bai, Y.-R.; G.-C. Wu Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., Volume 315 (2017), pp. 549-554 | DOI

[29] Zeng, F.-H.; Li, C.-P.; Liu, F.-W.; Turner, I. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., Volume 35 (2013), pp. 2976-3000 | DOI | Zbl

[30] Zhang, Y.-N.; Sun, Z.-Z.; Zhao, X. Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., Volume 50 (2012), pp. 1535-1555 | Zbl | DOI

[31] Zhao, X.; Sun, Z.-Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., Volume 230 (2011), pp. 6061-6074 | DOI | Zbl

[32] Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., Volume 47 (2009), pp. 1760-1781 | DOI | Zbl

Cité par Sources :