Voir la notice de l'article provenant de la source International Scientific Research Publications
Bai, Yunru  1 ; Kong, Hua  2
@article{JNSA_2017_10_11_a11, author = {Bai, Yunru and Kong, Hua }, title = {Existence of solutions for nonlinear {Caputo-Hadamard} fractional differential equations via the method of upper and lower solutions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5744-5752}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/} }
TY - JOUR AU - Bai, Yunru AU - Kong, Hua TI - Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5744 EP - 5752 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/ DO - 10.22436/jnsa.010.11.12 LA - en ID - JNSA_2017_10_11_a11 ER -
%0 Journal Article %A Bai, Yunru %A Kong, Hua %T Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions %J Journal of nonlinear sciences and its applications %D 2017 %P 5744-5752 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/ %R 10.22436/jnsa.010.11.12 %G en %F JNSA_2017_10_11_a11
Bai, Yunru ; Kong, Hua . Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5744-5752. doi : 10.22436/jnsa.010.11.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.12/
[1] Fractional calculus, Models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012 | Zbl
[2] Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., Volume 269 (2002), pp. 1-27 | Zbl | DOI
[3] Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., Volume 59 (2010), pp. 1754-1758 | Zbl | DOI
[4] Attractivity of fractional functional differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 1359-1369 | DOI
[5] Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator, Nonlinear Anal. Real World Appl., Volume 33 (2017), pp. 121-138 | Zbl | DOI
[6] p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., Volume 35 (2017), pp. 350-378 | Zbl | DOI
[7] On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ., Volume 2014 (2014), pp. 1-12 | DOI | Zbl
[8] Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI
[9] Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ., Volume 2012 (2012), pp. 1-8 | DOI | Zbl
[10] Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006
[11] Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Anal. Real World Appl., Volume 36 (2017), pp. 154-182 | DOI | Zbl
[12] Numerical methods for fractional calculus, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2015
[13] Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., Volume 12 (2009), pp. 409-422
[14] Fractional calculus in bioengineering, Begell House, Redding, 2006
[15] Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models, Imperial College Press, London, 2010 | DOI
[16] Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian, Nonlinear Anal. Real World Appl., Volume 37 (2017), pp. 56-70 | Zbl | DOI
[17] Fractional differential equations , An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999
[18] Fractional integrals and derivatives , Theory and applications, Edited and with a foreword by S. M. Nikol’skiı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993
[19] Finite difference schemes for variable-order time fractional diffusion equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-16 | Zbl | DOI
[20] A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J., Volume 193 (2011), pp. 185-192 | DOI
[21] Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. Real World Appl., Volume 35 (2017), pp. 158-174 | Zbl | DOI
[22] Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI
[23] Discrete chaos in fractional sine and standard maps, Phys. Lett. A, Volume 378 (2014), pp. 484-487 | DOI | Zbl
[24] A new integral transform operator for solving the heat-diffusion problem, Appl. Math. Lett., Volume 64 (2017), pp. 193-197 | Zbl | DOI
[25] Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016 | DOI | Zbl
[26] A new fractional operator of variable order: application in the description of anomalous diffusion , Phys. A, Volume 418 (2017), pp. 276-283 | DOI
[27] Nonlinear functional analysis and its applications, II/B, Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron, Springer-Verlag, New York, 1990 | Zbl | DOI
[28] Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., Volume 315 (2017), pp. 549-554 | DOI
[29] The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., Volume 35 (2013), pp. 2976-3000 | DOI | Zbl
[30] Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., Volume 50 (2012), pp. 1535-1555 | Zbl | DOI
[31] A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., Volume 230 (2011), pp. 6061-6074 | DOI | Zbl
[32] Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., Volume 47 (2009), pp. 1760-1781 | DOI | Zbl
Cité par Sources :