Solvability of second-order $m$-point difference equation boundary value problems on infinite intervals
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5734-5743.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study second-order $m$-point difference boundary value problems on infinite intervals
$ \left\{\begin{array}{l} \Delta^{2}x(k-1)+f(k,x(k),\Delta x(k-1))=0,~k\in N,\\ x(0)=\sum\limits_{i=1}^{m-2}\alpha_{i}x(\eta_{i}),~\lim\limits_{k \rightarrow\infty }\Delta x(k)=0, \end{array} \right. $
where $N=\{1,2,\cdots\},\ f:N\times R^{2}\rightarrow R$ is continuous, $\alpha_{i}\in R,~\sum\limits_{i=1}^{m-2}\alpha_{i}\neq1,~\eta_{i}\in N,~0\eta_{1}\eta_{2}\cdots\infty$ and
$\Delta x(k)=x(k+1)-x(k),$
the nonlinear term is dependent in a difference of lower order on infinite intervals. By using Leray-Schauder continuation theorem, the existence of solutions are investigated. Finally, we give one example to demonstrate the use of the main result.
DOI : 10.22436/jnsa.010.11.11
Classification : 34B15, 34B16, 34B18, 34G20
Keywords: Difference equation, boundary value problem, Leray-Schauder continuation theorem, infinite interval

Yu, Changlong  1 ; Wang, Jufang  1 ; Guo, Yanping  1 ; Miao, Surong  1

1 College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P. R. China
@article{JNSA_2017_10_11_a10,
     author = {Yu, Changlong  and Wang, Jufang  and Guo, Yanping  and Miao, Surong },
     title = {Solvability of second-order \(m\)-point difference equation boundary value problems on infinite intervals},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5734-5743},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.11/}
}
TY  - JOUR
AU  - Yu, Changlong 
AU  - Wang, Jufang 
AU  - Guo, Yanping 
AU  - Miao, Surong 
TI  - Solvability of second-order \(m\)-point difference equation boundary value problems on infinite intervals
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5734
EP  - 5743
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.11/
DO  - 10.22436/jnsa.010.11.11
LA  - en
ID  - JNSA_2017_10_11_a10
ER  - 
%0 Journal Article
%A Yu, Changlong 
%A Wang, Jufang 
%A Guo, Yanping 
%A Miao, Surong 
%T Solvability of second-order \(m\)-point difference equation boundary value problems on infinite intervals
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5734-5743
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.11/
%R 10.22436/jnsa.010.11.11
%G en
%F JNSA_2017_10_11_a10
Yu, Changlong ; Wang, Jufang ; Guo, Yanping ; Miao, Surong . Solvability of second-order \(m\)-point difference equation boundary value problems on infinite intervals. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5734-5743. doi : 10.22436/jnsa.010.11.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.11/

[1] Agarwal, R. P.; Bohner, M.; O’Regan, D. Time scale boundary value problems on infinite intervals, Dynamic equations on time scales, J. Comput. Appl. Math., Volume 141 (2002), pp. 27-34 | DOI

[2] Agarwal, R. P.; O’Regan, D. Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl., Volume 33 (1997), pp. 85-99 | DOI

[3] Agarwal, R. P.; D. O’Regan Discrete systems on infinite intervals, Comput. Math. Appl., Volume 35 (1998), pp. 97-105 | DOI

[4] Agarwal, R. P.; D. O’Regan Existence and approximation of solutions of non-linear discrete systems on infinite intervals, Math. Methods Appl. Sci., Volume 22 (1999), pp. 91-99 | DOI

[5] Agarwal, R. P.; D. O’Regan Continuous and discrete boundary value problems on the infinite interval: existence theory, Mathematika, Volume 48 (2001), pp. 273-292 | Zbl | DOI

[6] Agarwal, R. P.; O’Regan, D. Infinite interval problems for differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 2001 | DOI

[7] Agarwal, R. P.; D. O’Regan Nonlinear Urysohn discrete equations on the infinite interval: a fixed-point approach, Advances in difference equations, III, Comput. Math. Appl., Volume 42 (2001), pp. 273-281 | DOI | Zbl

[8] Agarwal, R. P.; O’Regan, D. Non-linear boundary value problems on the semi-infinite interval: an upper and lower solution approach, Mathematika, Volume 49 (2002), pp. 129-140 | DOI

[9] Ahmad, B.; Alsaedi, A.; B. S. Alghamdi Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., Volume 9 (2008), pp. 1727-1740 | DOI | Zbl

[10] Baxley, J. V. Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. Math. Anal. Appl., Volume 147 (1990), pp. 122-133 | DOI

[11] Guo, Y.-P.; Yu, C.-L.; Wang, J.-F. Existence of three positive solutions for m-point boundary value problems on infinite intervals, Nonlinear Anal., Volume 71 (2009), pp. 717-722 | DOI

[12] G. S. Guseinov A boundary value problem for second order nonlinear difference equations on the semi-infinite interval, Special issue in honour of Professor Allan Peterson on the occasion of his 60th birthday, Part I, J. Difference Equ. Appl., Volume 8 (2002), pp. 1019-1032 | Zbl | DOI

[13] Kidder, R. E. Unsteady flow of gas through a semi-infinite porous medium, J. Appl. Mech., Volume 27 (1957), pp. 329-332

[14] Lian, H.-R.; Ge, W.-G. Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett., Volume 19 (2006), pp. 1000-1006 | DOI | Zbl

[15] Lian, H.-R.; Li, J.-W.; R. P. Agarwal Unbounded solutions of second order discrete BVPs on infinite intervals, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 357-369 | Zbl | DOI

[16] O’Regan, D. Theory of singular boundary value problems, World Scientific Publishing Co., Inc., River Edge, NJ, 1994

[17] Tian, Y.; Ge, W.-G. Multiple positive solutions of boundary value problems for second-order discrete equations on the half-line, J. Difference Equ. Appl., Volume 12 (2006), pp. 191-208 | DOI

[18] Tian, Y.; Tisdell, C. C.; W.-G. Ge The method of upper and lower solutions for discrete BVP on infinite intervals, J. Difference Equ. Appl., Volume 17 (2011), pp. 267-278 | DOI | Zbl

[19] Yu, C.-L.; Wang, J.-F.; G.-G. Li Existence of positive solutions for nth-order integral boundary value problems with p- Laplacian operator on infinite interval, J. Hebei Univ. Sci. Technol., Volume 36 (2015), pp. 382-389 | DOI

[20] Zheng, L.; Zhang, X.; He, J. Singular nonlinear boundary value problem for transmission process, Science Press, Beijing, 2003

Cité par Sources :