Voir la notice de l'article provenant de la source International Scientific Research Publications
Zheng, Dingwei  1 ; Liu, Xinhe  1 ; Zhang, Gengrong  2
@article{JNSA_2017_10_11_a9, author = {Zheng, Dingwei and Liu, Xinhe and Zhang, Gengrong }, title = {Some fixed point theorems for \(\theta\)-\(\phi\) {\({C}\)-contractions}}, journal = {Journal of nonlinear sciences and its applications}, pages = {5723-5733}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.10/} }
TY - JOUR AU - Zheng, Dingwei AU - Liu, Xinhe AU - Zhang, Gengrong TI - Some fixed point theorems for \(\theta\)-\(\phi\) \({C}\)-contractions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5723 EP - 5733 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.10/ DO - 10.22436/jnsa.010.11.10 LA - en ID - JNSA_2017_10_11_a9 ER -
%0 Journal Article %A Zheng, Dingwei %A Liu, Xinhe %A Zhang, Gengrong %T Some fixed point theorems for \(\theta\)-\(\phi\) \({C}\)-contractions %J Journal of nonlinear sciences and its applications %D 2017 %P 5723-5733 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.10/ %R 10.22436/jnsa.010.11.10 %G en %F JNSA_2017_10_11_a9
Zheng, Dingwei ; Liu, Xinhe ; Zhang, Gengrong . Some fixed point theorems for \(\theta\)-\(\phi\) \({C}\)-contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5723-5733. doi : 10.22436/jnsa.010.11.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.10/
[1] Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., Volume 75 (2012), pp. 3895-3901 | DOI
[2] On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464
[3] On the convergence of successive approximations for nonlinear functional equations, Indag. Math., Volume 71 (1968), pp. 27-35
[4] Fixed-point theorems , C. R. Acad. Bulgare Sci., Volume 25 (1972), pp. 727-730
[5] Unique fixed point theorem for weakly C-contractive mappings, Kathmandu Univ. J. Sci. Eng. Technol., Volume 5 (2009), pp. 6-13
[6] A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., Volume 73 (2010), pp. 2524-2531 | DOI
[7] Weakly contractive maps and elementary domain invariance theorem, Bull. Soc. Math. Gréce (N.S.), Volume 19 (1978), pp. 141-151 | Zbl
[8] Some remarks on coupled, tripled and n-tupled coincidence and fixed points theorems in ordered abstract metric spaces, Far East J. Math. Sci., Volume 97 (2015), pp. 809-839 | DOI | Zbl
[9] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393 | DOI
[10] Fixed point theorems for weakly C-contractive mappings in ordered metric spaces, Comput. Math. Appl., Volume 61 (2011), pp. 790-796 | DOI
[11] Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2327-2335 | Zbl | DOI
[12] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | DOI
[13] Some results on fixed points, II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408 | DOI
[14] Integrable solutions of functional equations, Dissertationes Math. (Rozprawy Mat.), Volume 127 (1975), pp. 1-68 | EuDML
[15] Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11 | DOI | Zbl
[16] Remarks on some coupled fixed point results in partial metric spaces, Nonlinear Funct. Anal. Appl., Volume 18 (2013), pp. 39-50 | Zbl
[17] A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., Volume 236 (2014), pp. 367-372 | DOI | Zbl
[18] Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl., Volume 5 (2014), pp. 96-103 | Zbl
[19] Coupled fixed point theorems for monotone mappings in partially ordered metric spaces, Kragujevac J. Math., Volume 38 (2014), pp. 249-257 | DOI
[20] Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci., Volume 20 (2014), pp. 29-39 | DOI | Zbl
[21] Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 4508-4517 | DOI | Zbl
[22] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
[23] Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces, Math. Comput. Modelling, Volume 54 (2011), pp. 2816-2826 | DOI
[24] Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | DOI
[25] New fixed point theorems for \(\theta-\phi\) contraction in complete metric spaces, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2662-2670 | DOI
Cité par Sources :