Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Dongfeng  1 ; Zhao, Juan  2
@article{JNSA_2017_10_11_a8, author = {Li, Dongfeng and Zhao, Juan }, title = {Viscosity regularization iterative methods and convergence analysis}, journal = {Journal of nonlinear sciences and its applications}, pages = {5712-5722}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/} }
TY - JOUR AU - Li, Dongfeng AU - Zhao, Juan TI - Viscosity regularization iterative methods and convergence analysis JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5712 EP - 5722 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/ DO - 10.22436/jnsa.010.11.09 LA - en ID - JNSA_2017_10_11_a8 ER -
%0 Journal Article %A Li, Dongfeng %A Zhao, Juan %T Viscosity regularization iterative methods and convergence analysis %J Journal of nonlinear sciences and its applications %D 2017 %P 5712-5722 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/ %R 10.22436/jnsa.010.11.09 %G en %F JNSA_2017_10_11_a8
Li, Dongfeng ; Zhao, Juan . Viscosity regularization iterative methods and convergence analysis. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5712-5722. doi : 10.22436/jnsa.010.11.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/
[1] Expanding the applicability of the generalized Newton method for generalized equations, Commun. Optim. Theory, Volume 2017 (2017), pp. 1-12
[2] Nonlinear semigroups and differential equations in Banach spaces, Translated from the Romanian, Editura Academiei Republicii Socialiste Romania, Bucharest; Noordhoff International Publishing, Leiden, 1976
[3] Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276 | DOI
[4] Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A., Volume 56 (1966), pp. 1080-1086 | DOI
[5] Iteration approaches to hierarchical variational inequalities for infinite nonexpansive mappings and finding zero points of m-accretive operators, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 213-235
[6] Existence of anti-periodic solutions for nonlinear implicit evolution equations with time dependent pseudomonotone operators, J. Nonlinear Var. Aanl., Volume 1 (2017), pp. 71-88
[7] Some problems and results in the study of nonlinear analysis, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 4197-4208 | DOI
[8] Strong convergence theorems by viscosity approximation methods for accretive mappings and nonexpansive mappings, J. Appl. Math. Inform., Volume 27 (2009), pp. 59-68
[9] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[10] Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15 | DOI | Zbl
[11] Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520 | DOI
[12] Strong convergence of modified Mann iterations, Nonlinear Anal., Volume 61 (2005), pp. 51-60 | DOI
[13] A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, Volume 72 (1965), pp. 1004-1006 | DOI | Zbl
[14] Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI
[15] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI
[16] General variational inclusions and dynamical systems, Commun. Optim. Theory, Volume 2017 (2017), pp. 1-18 | DOI
[17] Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., Volume 274 (2002), pp. 59-68 | DOI
[18] Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI
[19] Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17 | DOI | Zbl
[20] Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 925-935 | Zbl
[21] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276 | DOI
[22] Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., Volume 75 (1980), pp. 287-292 | DOI
[23] Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | Zbl
[24] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123 | Zbl | DOI
Cité par Sources :