Viscosity regularization iterative methods and convergence analysis
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5712-5722.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a Moudafi's type viscosity regularization iterative method is introduced and investigated for an $m$-accretive mapping and a nonexpansive mapping. Strong convergence of the regularization iterative method is obtained in the framework of real uniformly smooth Banach spaces. Some subresults are also provided as applications of the main results.
DOI : 10.22436/jnsa.010.11.09
Classification : 47H05, 65J15, 47N10
Keywords: Accretive mapping, regularization iteration, uniform smoothness, operator equation

Li, Dongfeng  1 ; Zhao, Juan  2

1 School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
2 School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
@article{JNSA_2017_10_11_a8,
     author = {Li, Dongfeng  and Zhao, Juan },
     title = {Viscosity regularization iterative methods and  convergence analysis},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5712-5722},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/}
}
TY  - JOUR
AU  - Li, Dongfeng 
AU  - Zhao, Juan 
TI  - Viscosity regularization iterative methods and  convergence analysis
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5712
EP  - 5722
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/
DO  - 10.22436/jnsa.010.11.09
LA  - en
ID  - JNSA_2017_10_11_a8
ER  - 
%0 Journal Article
%A Li, Dongfeng 
%A Zhao, Juan 
%T Viscosity regularization iterative methods and  convergence analysis
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5712-5722
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/
%R 10.22436/jnsa.010.11.09
%G en
%F JNSA_2017_10_11_a8
Li, Dongfeng ; Zhao, Juan . Viscosity regularization iterative methods and  convergence analysis. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5712-5722. doi : 10.22436/jnsa.010.11.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.09/

[1] Argyros, I. K.; George, S.; Erappa, S. M. Expanding the applicability of the generalized Newton method for generalized equations, Commun. Optim. Theory, Volume 2017 (2017), pp. 1-12

[2] V. Barbu Nonlinear semigroups and differential equations in Banach spaces, Translated from the Romanian, Editura Academiei Republicii Socialiste Romania, Bucharest; Noordhoff International Publishing, Leiden, 1976

[3] F. E. Browder Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276 | DOI

[4] Browder, F. E. Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A., Volume 56 (1966), pp. 1080-1086 | DOI

[5] Ceng, L.-C.; Wen, C.-F.; Yao, Y.-H. Iteration approaches to hierarchical variational inequalities for infinite nonexpansive mappings and finding zero points of m-accretive operators, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 213-235

[6] Chadli, O.; Koukkous, A.; A. Saidi Existence of anti-periodic solutions for nonlinear implicit evolution equations with time dependent pseudomonotone operators, J. Nonlinear Var. Aanl., Volume 1 (2017), pp. 71-88

[7] Chang, S.-S. Some problems and results in the study of nonlinear analysis, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 4197-4208 | DOI

[8] Chang, S.-S.; Lee, H. W. J.; Chan, C. K. Strong convergence theorems by viscosity approximation methods for accretive mappings and nonexpansive mappings, J. Appl. Math. Inform., Volume 27 (2009), pp. 59-68

[9] Cho, S. Y.; Dehaish, B. A. Bin; Qin, X.-L. Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438

[10] Cho, S. Y.; Qin, X.-L.; L. Wang Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15 | DOI | Zbl

[11] Kato, T. Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520 | DOI

[12] Kim, T.-H.; Xu, H.-K. Strong convergence of modified Mann iterations, Nonlinear Anal., Volume 61 (2005), pp. 51-60 | DOI

[13] Kirk, W. A. A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, Volume 72 (1965), pp. 1004-1006 | DOI | Zbl

[14] L. S. Liu Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI

[15] A. Moudafi Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI

[16] Noor, M. A.; Kamal, R.; K. I. Noor General variational inclusions and dynamical systems, Commun. Optim. Theory, Volume 2017 (2017), pp. 1-18 | DOI

[17] Noor, M. A.; Rassias, T.; Huang, Z.-Y. Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., Volume 274 (2002), pp. 59-68 | DOI

[18] Qin, X.-L.; S. Y. Cho Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI

[19] Qin, X.-L.; Cho, S. Y.; Wang, L. Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17 | DOI | Zbl

[20] Qin, X.-L.; Yao, J.-C. Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 925-935 | Zbl

[21] Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276 | DOI

[22] Reich, S. Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., Volume 75 (1980), pp. 287-292 | DOI

[23] Rockafellar, R. T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | Zbl

[24] T. Suzuki Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123 | Zbl | DOI

Cité par Sources :