Voir la notice de l'article provenant de la source International Scientific Research Publications
Zada, Akbar  1 ; Shah, Syed Omar  1 ; Li, Yongjin  2
@article{JNSA_2017_10_11_a7, author = {Zada, Akbar and Shah, Syed Omar and Li, Yongjin }, title = {Hyers-Ulam stability of nonlinear impulsive {Volterra} integro-delay dynamic system on time scales}, journal = {Journal of nonlinear sciences and its applications}, pages = {5701-5711}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.08/} }
TY - JOUR AU - Zada, Akbar AU - Shah, Syed Omar AU - Li, Yongjin TI - Hyers-Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5701 EP - 5711 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.08/ DO - 10.22436/jnsa.010.11.08 LA - en ID - JNSA_2017_10_11_a7 ER -
%0 Journal Article %A Zada, Akbar %A Shah, Syed Omar %A Li, Yongjin %T Hyers-Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales %J Journal of nonlinear sciences and its applications %D 2017 %P 5701-5711 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.08/ %R 10.22436/jnsa.010.11.08 %G en %F JNSA_2017_10_11_a7
Zada, Akbar ; Shah, Syed Omar ; Li, Yongjin . Hyers-Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5701-5711. doi : 10.22436/jnsa.010.11.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.08/
[1] Linear impulsive Volterra integro-dynamic system on time scales, Adv. Difference Equ., Volume 2014 (2014), pp. 1-17 | DOI
[2] On some inequalities and stability results related to the exponential function, J. Inequal. Appl., Volume 2 (1998), pp. 373-380 | DOI
[3] Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., Volume 209 (2013), pp. 4853-4864 | Zbl | DOI
[4] Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, C. R. Acad. Bulgare Sci., Volume 42 (1989), pp. 29-32
[5] Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, USA, 2001
[6] Advances in Dynamics Equations on time scales, Birkhäuser Boston, USA, 2003 | DOI
[7] Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math., Volume 176 (2005), pp. 381-410 | DOI
[8] Stability of abstract dynamic equations on time scales, Adv. Difference Equ., Volume 2012 (2012), pp. 1-15 | DOI
[9] Analysis on measure chains-A unified approach to continuous and discrete calculus, Result math., Volume 18 (1990), pp. 18-56 | DOI | Zbl
[10] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224 | DOI
[11] Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., Volume 17 (2004), pp. 1135-1140 | DOI
[12] Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., Volume 320 (2006), pp. 549-561 | DOI | Zbl
[13] Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett., Volume 22 (2009), pp. 70-74 | DOI | Zbl
[14] The linear differential equations with complex constant coefficients and Schrödinger equations, Appl. Math. Lett., Volume 66 (2017), pp. 23-29 | Zbl | DOI
[15] Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., Volume 23 (2010), pp. 306-309 | DOI
[16] Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ., Volume 2016 (2016), pp. 1-8 | DOI
[17] Linear impulsive dynamic systems on time scales, Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-30
[18] Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., Volume 13 (1993), pp. 259-270
[19] Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.- Dydakt. Prace Mat., Volume 14 (1997), pp. 141-146 | Zbl
[20] A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Sys., Volume 9 (2003), pp. 1223-1241 | Zbl | DOI
[21] On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300 | DOI
[22] Gronwall lemmas: ten open problems, Sci. Math. Jpn., Volume 70 (2009), pp. 221-228 | Zbl
[23] A collection of the mathematical problems, Interscience Publishers, New York, 1960
[24] Problem in modern mathematics, Science Editions John Wiley and Sons, New York, 1964
[25] Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., Volume 40 (2017), pp. 5502-5514 | DOI | Zbl
[26] On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces, Volume 2016 (2016), pp. 1-6 | Zbl
[27] Exponential dichotomy of linear autonomous systems over time scales, Diff. Equa. Appl., Volume 8 (2016), pp. 123-134 | Zbl
[28] Hyers-Ulam stability in terms of dichotomy of first order linear dynamic systems , Punjab Univ. J. Math., Volume 49 (2017), pp. 37-47 | Zbl
[29] Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., Volume 271 (2015), pp. 512-518 | DOI
[30] Hyers-Ulam stability of linear summation equations, Punjab Univ. J. Math., Volume 49 (2017), pp. 19-24 | Zbl
[31] Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems , Adv. Difference Equ., Volume 2017 (2017), pp. 1-7 | DOI
Cité par Sources :