Fixed points of weakly compatible mappings satisfying a generalized common limit range property
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5690-5700.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we produce new fixed point theorems for $2n$ self-mappings $\wp^a_1,\wp^a_2,\ldots,\wp^a_n$, $\gamma^b_1,\gamma^b_2,\ldots,\gamma^b_n:\mathcal{X}\rightarrow\mathcal{X}$ on a metric space $(\mathcal{X},\rho )$, satisfying a generalized common limit range (CLR) property or CLR$_{\wp^a_k\gamma^b_l}$ for $k,l=2,\ldots,n$. Along with the newly introduced property CLR$_{\wp^a_k\gamma^b_l}$ for $k,l=2,\ldots,n$ for the $2n$ self-mappings, we also assume that the pairs $(\wp^a_1,\gamma^b_1),(\wp^a_2,\gamma^b_2),\ldots,(\wp^a_n,\gamma^b_n)$ are weakly compatible. From the main result, we produce three more corollaries as its special cases. These results generalize the work of Sarwar et al. [M. Sarwar, M. Bahadur Zada, I. M. Erhan, Fixed Point Theory Appl., ${\bf 2015}$ (2015), 15 pages] and many others in the available literature. Two examples are also presented for the applications of our new FPTs.
DOI : 10.22436/jnsa.010.11.07
Classification : 47H10, 54H25
Keywords: Weakly compatible mappings, common limit range property, fixed point theorems

Khan, Aziz  1 ; Khan, Hasib  2 ; Baleanu, Dumitru  3 ; Karapinar, Erdal  4 ; Khan, Tahir Saeed  1

1 Department of Mathematics, University of Peshawar, P. O. Box 25000, Khyber Pakhtunkhwa, Pakistan
2 College of Engineering, Mechanics and Materials, Hohai University, 210098, Nanjing, P. R. China;Shaheed Benazir Bhutto University Sheringal, Dir Upper, 18000, Khyber Pakhtunkhwa, Pakistan
3 Department of Mathematics, Cankaya University, 06530 Ankara, Turkey;Institute of Space Sciences, P. O. BOX, MG-23, 76900 Magrrele-Bucharest, Romania
4 Department of Mathematics, Atilim University, 06586 Incek, Ankara, Turkey
@article{JNSA_2017_10_11_a6,
     author = {Khan, Aziz  and Khan, Hasib  and Baleanu, Dumitru  and Karapinar, Erdal  and Khan, Tahir Saeed },
     title = {Fixed points of weakly compatible mappings satisfying a generalized common limit range property},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5690-5700},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.07/}
}
TY  - JOUR
AU  - Khan, Aziz 
AU  - Khan, Hasib 
AU  - Baleanu, Dumitru 
AU  - Karapinar, Erdal 
AU  - Khan, Tahir Saeed 
TI  - Fixed points of weakly compatible mappings satisfying a generalized common limit range property
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5690
EP  - 5700
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.07/
DO  - 10.22436/jnsa.010.11.07
LA  - en
ID  - JNSA_2017_10_11_a6
ER  - 
%0 Journal Article
%A Khan, Aziz 
%A Khan, Hasib 
%A Baleanu, Dumitru 
%A Karapinar, Erdal 
%A Khan, Tahir Saeed 
%T Fixed points of weakly compatible mappings satisfying a generalized common limit range property
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5690-5700
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.07/
%R 10.22436/jnsa.010.11.07
%G en
%F JNSA_2017_10_11_a6
Khan, Aziz ; Khan, Hasib ; Baleanu, Dumitru ; Karapinar, Erdal ; Khan, Tahir Saeed . Fixed points of weakly compatible mappings satisfying a generalized common limit range property. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5690-5700. doi : 10.22436/jnsa.010.11.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.07/

[1] Agarwal, R. P.; El-Gebeily, M. A.; O’Regan, D. Generalized contractions in partially ordered metric spaces, Appl. Anal., Volume 87 (2008), pp. 109-116 | DOI

[2] Agarwal, R. P.; Karapnar, E.; B. Samet An essential remark on fixed point results on multiplicative metric spaces, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-3 | Zbl | DOI

[3] Ali, M. U.; Kamran, T. On (\(\alpha,\psi\))-contractive multi-valued mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-7 | DOI

[4] Ali, M. U.; Kamran, T.; Karapınar, E. An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[5] Aydi, H.; Karapınar, E.; Yüce, I. Ş. Quadruple fixed point theorems in partially ordered metric spaces depending on another function, ISRN Appl. Math., Volume 2012 (2012), pp. 1-16 | DOI | Zbl

[6] Baleanu, D.; Agarwal, R. P.; Khan, H.; Khan, R. A.; H. Jafari On the existence of solution for fractional differential equations of order \(3 < \delta_1\leq 4\), Adv. Differ. Equ., Volume 2015 (2015), pp. 1-9 | DOI

[7] Baleanu, D.; Jafari, H.; Khan, H.; Johnston, S. J. Results for mild solution of fractional coupled hybrid boundary value problems, Open Math., Volume 13 (2015), pp. 601-608 | Zbl | DOI

[8] Baleanu, D.; Khan, H.; Jafari, H.; Khan, R. A.; Alipour, M. On existence results for solutions of a coupled systemof hybrid boundary value problems with hybrid conditions, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14 | DOI

[9] Banach, S. Sur les operation dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., Volume 3 (1922), pp. 133-181

[10] Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 4889-4897 | DOI

[11] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorem on partially ordered metric spaces with applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393 | DOI

[12] Bota, M.-F.; Petruşel, A.; Petruşel, G.; B. Samet Coupled fixed point theorems for single-valued operators in b-metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-15 | DOI

[13] A. Branciari A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 29 (2002), pp. 531-536

[14] Hussain, N.; Isik, H.; Abbas, M. Common fixed point results of generalized almost rational contraction mappings with an application, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 2273-2288 | Zbl | DOI

[15] Jafari, H.; Baleanu, D.; Khan, H.; Khan, R. A.; A. Khan Existence criterion for the solutions of fractional order p-Laplacian boundary value problems, Bound. Value Probl., Volume 2015 (2015), pp. 1-10 | DOI | Zbl

[16] Jiang, F.-F.; J. Sun On the existence of discontinuous periodic solutions for a class of Linard systems with impulses, Appl. Math. Comput., Volume 291 (2016), pp. 259-265 | DOI

[17] Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | DOI

[18] Khan, H.; Jafari, H.; Baleanu, D.; Khan, R. A.; Khan, Aziz On iterative solutions and error estimations of a coupled system of fractional order differential-integral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., Volume 2017 (2017), pp. 1-13 | DOI

[19] Khan, M. S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., Volume 30 (1984), pp. 1-9 | DOI

[20] Liu, X.-L. Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-18 | DOI | Zbl

[21] Mustafa, Z.; Karapınar, E.; H. Aydi A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-12 | DOI | Zbl

[22] Nadler, S. B. Multivalued contraction mappings, Pac. J. Math., Volume 30 (1969), pp. 475-478

[23] Sarwar, M.; Zada, M. Bahadur; Erhan, I. M. Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-15 | Zbl | DOI

[24] Shatanawi, W.; Samet, B.; Abbas, M. Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Modelling, Volume 55 (2012), pp. 680-687 | DOI

[25] Stojaković, M.; Gajić, L.; Došenović, T.; Carić, B. Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-10 | DOI

Cité par Sources :