Voir la notice de l'article provenant de la source International Scientific Research Publications
Bao, Yu-E  1 ; Li , Jin-Jun  1 ; Bai, Eer-Dun  2
@article{JNSA_2017_10_11_a5, author = {Bao, Yu-E and Li , Jin-Jun and Bai, Eer-Dun }, title = {Study on differentiability problems of interval-valued functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5677-5689}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/} }
TY - JOUR AU - Bao, Yu-E AU - Li , Jin-Jun AU - Bai, Eer-Dun TI - Study on differentiability problems of interval-valued functions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5677 EP - 5689 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/ DO - 10.22436/jnsa.010.11.06 LA - en ID - JNSA_2017_10_11_a5 ER -
%0 Journal Article %A Bao, Yu-E %A Li , Jin-Jun %A Bai, Eer-Dun %T Study on differentiability problems of interval-valued functions %J Journal of nonlinear sciences and its applications %D 2017 %P 5677-5689 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/ %R 10.22436/jnsa.010.11.06 %G en %F JNSA_2017_10_11_a5
Bao, Yu-E ; Li , Jin-Jun ; Bai, Eer-Dun . Study on differentiability problems of interval-valued functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5677-5689. doi : 10.22436/jnsa.010.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/
[1] Generalized derivative and \(\pi\)-derivative for set-valued functions, Inform. Sci., Volume 181 (2011), pp. 2177-2188 | DOI
[2] Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, Volume 219 (2013), pp. 49-67 | DOI | Zbl
[3] Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, Volume 265 (2015), pp. 63-85 | DOI | Zbl
[4] Interval Analysis, Prentice-Hall, New Jersey, 1966
[5] Optimality conditions for generalized differentiable interval-valued functions, Inform. Sci., Volume 321 (2015), pp. 136-146 | DOI
[6] Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., Volume 71 (2009), pp. 1311-1328 | DOI
[7] The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective functions, European J. Oper. Res., Volume 176 (2007), pp. 46-59 | DOI | Zbl
[8] The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. Oper. Res., Volume 196 (2009), pp. 49-60 | DOI | Zbl
Cité par Sources :