Study on differentiability problems of interval-valued functions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5677-5689.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we give the concepts of $H$-directional differentiability and $D$-directional differentiability of interval-valued functions. Then we discuss the properties of $H$-directional differentiable interval-valued functions and $D$-directional differentiable interval-valued functions. The necessary and sufficient conditions for the $H$-directional differentiability are given together with the sufficient conditions and the necessary and sufficient conditions for $D$-directional differentiability of interval-valued functions. Then we discuss the relationship between the two directional differentiability and prove these directional differentiability can be equivalent under a certain conditions.
DOI : 10.22436/jnsa.010.11.06
Classification : 46T20, 46G05
Keywords: Hukuhara difference, Hausdorff distance, interval-valued function, \(H\)-directional differentiability, \(D\)-directional differentiability

Bao, Yu-E  1 ; Li , Jin-Jun  1 ; Bai, Eer-Dun  2

1 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043, P. R. China
2 College of Computer Science and Technology, Inner Mongolia Universities, Tongliao, Inner Mongolia 028043, P. R. China
@article{JNSA_2017_10_11_a5,
     author = {Bao, Yu-E   and Li , Jin-Jun   and Bai, Eer-Dun },
     title = {Study on differentiability problems of interval-valued functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5677-5689},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/}
}
TY  - JOUR
AU  - Bao, Yu-E  
AU  - Li , Jin-Jun  
AU  - Bai, Eer-Dun 
TI  - Study on differentiability problems of interval-valued functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5677
EP  - 5689
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/
DO  - 10.22436/jnsa.010.11.06
LA  - en
ID  - JNSA_2017_10_11_a5
ER  - 
%0 Journal Article
%A Bao, Yu-E  
%A Li , Jin-Jun  
%A Bai, Eer-Dun 
%T Study on differentiability problems of interval-valued functions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5677-5689
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/
%R 10.22436/jnsa.010.11.06
%G en
%F JNSA_2017_10_11_a5
Bao, Yu-E  ; Li , Jin-Jun  ; Bai, Eer-Dun . Study on differentiability problems of interval-valued functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5677-5689. doi : 10.22436/jnsa.010.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.06/

[1] Chalco-Cano, Y.; Román-Flores, H.; Jiménez-Gamero, M. D. Generalized derivative and \(\pi\)-derivative for set-valued functions, Inform. Sci., Volume 181 (2011), pp. 2177-2188 | DOI

[2] Chalco-Cano, Y.; Rufián-Lizan, A.; Román-Flores, H.; Jiménez-Gamero, M. D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, Volume 219 (2013), pp. 49-67 | DOI | Zbl

[3] V. Lupulescu Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, Volume 265 (2015), pp. 63-85 | DOI | Zbl

[4] R. E. Moore Interval Analysis, Prentice-Hall, New Jersey, 1966

[5] Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions, Inform. Sci., Volume 321 (2015), pp. 136-146 | DOI

[6] Stefanini, L.; B. Bede Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., Volume 71 (2009), pp. 1311-1328 | DOI

[7] Wu, H.-C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective functions, European J. Oper. Res., Volume 176 (2007), pp. 46-59 | DOI | Zbl

[8] H.-C. Wu The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. Oper. Res., Volume 196 (2009), pp. 49-60 | DOI | Zbl

Cité par Sources :