The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5622-5645.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a class of predator-prey model with prey competition is proposed, in which the interactions of predation between predator and prey are randomised and subsequently evaluated under Markovian switching. By constructing appropriate Lyapunov functions and applying various analytical methods, sufficient conditions for the existence of unique global positive solution, stochastic permanence and mean extinction are established. In the permanence case, we also estimate the superior and inferior limits of the sample path in a time-averaged Markov decision. We conclude that the interactions between predator and two prey, two competitive prey themselves and the dynamical properties of switching subsystems are not only dependent on subsystem coefficients but also on the transition probability of the Markov chain (switching from one state to another). Specific examples and numerical simulations are provided to demonstrate our theoretical results.
DOI : 10.22436/jnsa.010.11.03
Classification : 92D25, 34D20, 34D10
Keywords: Random selection, competition between prey, Markovian switching, stochastic permanence, extinct in mean

Li, Yanqing  1 ; Zhang, Long  1

1 College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China
@article{JNSA_2017_10_11_a2,
     author = {Li, Yanqing  and Zhang, Long },
     title = {The stochastic interactions between predator and prey under {Markovian} switching: competitive interaction between multiple prey},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5622-5645},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/}
}
TY  - JOUR
AU  - Li, Yanqing 
AU  - Zhang, Long 
TI  - The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5622
EP  - 5645
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/
DO  - 10.22436/jnsa.010.11.03
LA  - en
ID  - JNSA_2017_10_11_a2
ER  - 
%0 Journal Article
%A Li, Yanqing 
%A Zhang, Long 
%T The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5622-5645
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/
%R 10.22436/jnsa.010.11.03
%G en
%F JNSA_2017_10_11_a2
Li, Yanqing ; Zhang, Long . The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5622-5645. doi : 10.22436/jnsa.010.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/

[1] Arditi, R.; L. R. Ginzburg Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., Volume 139 (1989), pp. 311-326 | DOI

[2] Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., Volume 44 (1975), pp. 331-340 | DOI

[3] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V. A model for tropic interaction, Ecol., Volume 56 (1975), pp. 881-892 | DOI

[4] Freedman, H. I. Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1980

[5] Freedman, H. I.; Ruan, S. G. Uniform persistence in functional-differential equations, J. Differential Equations, Volume 115 (1995), pp. 173-192 | DOI

[6] Ghirardato, P. On independence for non-additive measures, with a Fubini theorem, J. Econom. Theory, Volume 73 (1997), pp. 261-291 | DOI | Zbl

[7] Gilpin, M. E. Group selection in predator-prey communities, Princeton Univ. Press, New Jersey, 1975

[8] Hofbauer, J.; Sigmund, K. Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998

[9] Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Canada, Volume 46 (1965), pp. 5-60 | DOI

[10] Hsu, S. B.; T. W. Huang Global stability for a class of predator-prey systems, SIAM J. Appl. Math., Volume 55 (1995), pp. 763-783 | DOI

[11] G. E. Hutchinson The paradox of the plankton , Am. Nat., Volume 95 (1961), pp. 137-145 | DOI

[12] Li, X.-Y.; Jiang, D.-Q.; Mao, X.-R. Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., Volume 232 (2009), pp. 427-448 | DOI | Zbl

[13] Li, F.-F.; Sun, J.-T. Stability analysis of a reduced model of the lac operon under impulsive and switching control, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 1264-1277 | DOI | Zbl

[14] Liberzon, D.; A. S. Morse Basic problems in stability and design of switched systems, IEEE Control Syst., Volume 19 (1999), pp. 59-70 | DOI

[15] Liu, Z.-J.; Guo, S.-L.; Tan, R.-H.; Liu, M. Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations, Appl. Math. Model., Volume 40 (2016), pp. 5510-5531 | DOI

[16] Liu, M.; K. Wang Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Modelling, Volume 54 (2011), pp. 2139-2154 | DOI | Zbl

[17] Liu, M.; Wang, K. On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., Volume 63 (2012), pp. 871-886 | Zbl | DOI

[18] Liu, G.-R.; Yan, J.-R. Existence of positive periodic solutions for neutral delay Gause-type predator-prey system, Appl. Math. Model., Volume 35 (2011), pp. 5741-5750 | DOI | Zbl

[19] Mao, X.-R.; Yuan, C.-G. Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006

[20] R. M. May Stability and complexity in model ecosystems, Princeton University Press, New Jersey, 2001

[21] D. Neal Introduction to population biology, Cambridge University Press, New York, 2004

[22] Nisbet, R. M.; Gurney, W. Modelling fluctuating populations, John Wiley and Sons, Chichester and New York, Reprinted in 2003 by Blackburn Press, New Jersey, 1982

[23] Parrish, J. D.; Saila, S. B. Interspecific competition, predation and species diversity, J. Theor. Biol., Volume 27 (1970), pp. 207-220 | DOI

[24] Rockwood, L. L. Introduction to population ecology, John Wiley & Sons, India, 2015

[25] Shi, H.-B.; Y. Li Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput., Volume 250 (2015), pp. 71-77 | Zbl | DOI

[26] Sun, Z.-D.; Ge, S. S. Analysis and synthesis of switched linear control systems, Automatica J. IFAC, Volume 41 (2005), pp. 181-195 | DOI

[27] Takeuchi, Y. Global dynamical properties of Lotka-Volterra systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI

[28] Takeuchi, Y.; Du, N. H.; Hieu, N. T.; Sato, K.; Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., Volume 323 (2006), pp. 938-957 | Zbl | DOI

[29] A. Vlasic Stochastic replicator dynamics subject to Markovian switching, J. Math. Anal. Appl., Volume 427 (2015), pp. 235-247 | Zbl | DOI

[30] Wang, Q.; X.-Z. Liu Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, J. Franklin Inst., Volume 345 (2012), pp. 1030-1047 | Zbl | DOI

[31] Wang, Y.-J.; Shi, X.-M.; Zuo, Z.-Q.; Chen, M. Z. Q.; Shao, Y.-T. On finite-time stability for nonlinear impulsive switched systems, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 807-814 | DOI

[32] Wu, L.-G.; Shi, P.; H.-J. Gao State estimation and sliding-mode control of Markovian jump singular systems, IEEE Trans. Automat. Control, Volume 55 (2010), pp. 1213-1219 | Zbl | DOI

[33] Yagi, A.; Ton, T. V. Dynamic of a stochastic predator-prey population, Appl. Math. Comput., Volume 218 (2011), pp. 3100-3109 | DOI

[34] Yang, M.; Y.-W.Wang; Xiao, J.-W.; Y.-H. Huang Robust synchronization of singular complex switched networks with parametric uncertainties and unknown coupling topologies via impulsive control, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4404-4416 | Zbl | DOI

[35] Zhang, L.; Teng, Z.-D. The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches, Math. Methods Appl. Sci., Volume 39 (2016), pp. 3623-3639 | DOI | Zbl

[36] Zhang, L.; Teng, Z.-D.; Z.-J. Liu Survival analysis for a periodic predatory-prey model with prey impulsively unilateral diffusion in two patches, Appl. Math. Model., Volume 35 (2011), pp. 4243-4256 | DOI

[37] Zu, L.; Jiang, D.-Q.; O’Regan, D. Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 1-11 | DOI

Cité par Sources :