Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Yanqing  1 ; Zhang, Long  1
@article{JNSA_2017_10_11_a2, author = {Li, Yanqing and Zhang, Long }, title = {The stochastic interactions between predator and prey under {Markovian} switching: competitive interaction between multiple prey}, journal = {Journal of nonlinear sciences and its applications}, pages = {5622-5645}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/} }
TY - JOUR AU - Li, Yanqing AU - Zhang, Long TI - The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5622 EP - 5645 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/ DO - 10.22436/jnsa.010.11.03 LA - en ID - JNSA_2017_10_11_a2 ER -
%0 Journal Article %A Li, Yanqing %A Zhang, Long %T The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey %J Journal of nonlinear sciences and its applications %D 2017 %P 5622-5645 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/ %R 10.22436/jnsa.010.11.03 %G en %F JNSA_2017_10_11_a2
Li, Yanqing ; Zhang, Long . The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5622-5645. doi : 10.22436/jnsa.010.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.03/
[1] Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., Volume 139 (1989), pp. 311-326 | DOI
[2] Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., Volume 44 (1975), pp. 331-340 | DOI
[3] A model for tropic interaction, Ecol., Volume 56 (1975), pp. 881-892 | DOI
[4] Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1980
[5] Uniform persistence in functional-differential equations, J. Differential Equations, Volume 115 (1995), pp. 173-192 | DOI
[6] On independence for non-additive measures, with a Fubini theorem, J. Econom. Theory, Volume 73 (1997), pp. 261-291 | DOI | Zbl
[7] Group selection in predator-prey communities, Princeton Univ. Press, New Jersey, 1975
[8] Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998
[9] The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Canada, Volume 46 (1965), pp. 5-60 | DOI
[10] Global stability for a class of predator-prey systems, SIAM J. Appl. Math., Volume 55 (1995), pp. 763-783 | DOI
[11] The paradox of the plankton , Am. Nat., Volume 95 (1961), pp. 137-145 | DOI
[12] Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., Volume 232 (2009), pp. 427-448 | DOI | Zbl
[13] Stability analysis of a reduced model of the lac operon under impulsive and switching control, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 1264-1277 | DOI | Zbl
[14] Basic problems in stability and design of switched systems, IEEE Control Syst., Volume 19 (1999), pp. 59-70 | DOI
[15] Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations, Appl. Math. Model., Volume 40 (2016), pp. 5510-5531 | DOI
[16] Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Modelling, Volume 54 (2011), pp. 2139-2154 | DOI | Zbl
[17] On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., Volume 63 (2012), pp. 871-886 | Zbl | DOI
[18] Existence of positive periodic solutions for neutral delay Gause-type predator-prey system, Appl. Math. Model., Volume 35 (2011), pp. 5741-5750 | DOI | Zbl
[19] Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006
[20] Stability and complexity in model ecosystems, Princeton University Press, New Jersey, 2001
[21] Introduction to population biology, Cambridge University Press, New York, 2004
[22] Modelling fluctuating populations, John Wiley and Sons, Chichester and New York, Reprinted in 2003 by Blackburn Press, New Jersey, 1982
[23] Interspecific competition, predation and species diversity, J. Theor. Biol., Volume 27 (1970), pp. 207-220 | DOI
[24] Introduction to population ecology, John Wiley & Sons, India, 2015
[25] Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput., Volume 250 (2015), pp. 71-77 | Zbl | DOI
[26] Analysis and synthesis of switched linear control systems, Automatica J. IFAC, Volume 41 (2005), pp. 181-195 | DOI
[27] Global dynamical properties of Lotka-Volterra systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI
[28] Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., Volume 323 (2006), pp. 938-957 | Zbl | DOI
[29] Stochastic replicator dynamics subject to Markovian switching, J. Math. Anal. Appl., Volume 427 (2015), pp. 235-247 | Zbl | DOI
[30] Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, J. Franklin Inst., Volume 345 (2012), pp. 1030-1047 | Zbl | DOI
[31] On finite-time stability for nonlinear impulsive switched systems, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 807-814 | DOI
[32] State estimation and sliding-mode control of Markovian jump singular systems, IEEE Trans. Automat. Control, Volume 55 (2010), pp. 1213-1219 | Zbl | DOI
[33] Dynamic of a stochastic predator-prey population, Appl. Math. Comput., Volume 218 (2011), pp. 3100-3109 | DOI
[34] Robust synchronization of singular complex switched networks with parametric uncertainties and unknown coupling topologies via impulsive control, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4404-4416 | Zbl | DOI
[35] The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches, Math. Methods Appl. Sci., Volume 39 (2016), pp. 3623-3639 | DOI | Zbl
[36] Survival analysis for a periodic predatory-prey model with prey impulsively unilateral diffusion in two patches, Appl. Math. Model., Volume 35 (2011), pp. 4243-4256 | DOI
[37] Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 1-11 | DOI
Cité par Sources :