Voir la notice de l'article provenant de la source International Scientific Research Publications
Jiang, Cuimei  1 ; Zhang, Fangfang  2 ; Qin, Haiyong  3 ; Li, Tongxing 4
@article{JNSA_2017_10_11_a1, author = {Jiang, Cuimei and Zhang, Fangfang and Qin, Haiyong and Li, Tongxing}, title = {Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control}, journal = {Journal of nonlinear sciences and its applications}, pages = {5608-5621}, publisher = {mathdoc}, volume = {10}, number = {11}, year = {2017}, doi = {10.22436/jnsa.010.11.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/} }
TY - JOUR AU - Jiang, Cuimei AU - Zhang, Fangfang AU - Qin, Haiyong AU - Li, Tongxing TI - Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5608 EP - 5621 VL - 10 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/ DO - 10.22436/jnsa.010.11.02 LA - en ID - JNSA_2017_10_11_a1 ER -
%0 Journal Article %A Jiang, Cuimei %A Zhang, Fangfang %A Qin, Haiyong %A Li, Tongxing %T Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control %J Journal of nonlinear sciences and its applications %D 2017 %P 5608-5621 %V 10 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/ %R 10.22436/jnsa.010.11.02 %G en %F JNSA_2017_10_11_a1
Jiang, Cuimei ; Zhang, Fangfang ; Qin, Haiyong ; Li, Tongxing. Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5608-5621. doi : 10.22436/jnsa.010.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/
[1] Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2164-2176 | Zbl | DOI
[2] Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2951-2957 | DOI
[3] Stability analysis of Caputo-like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simul., Volume 48 (2017), pp. 520-530 | DOI
[4] Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 3536-3546 | DOI
[5] Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., Volume 13 (1967), pp. 529-539 | DOI
[6] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems, Phys. Lett. A, Volume 375 (2011), pp. 2099-2110 | Zbl | DOI
[7] Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control , Modern Phys. Lett. B, Volume 2017 (2017), pp. 1-19 | DOI
[8] A predictor-corrector approch for the numerical solution of fractional differential equations, Nonlinear Dynam., Volume 29 (2002), pp. 3-22 | DOI
[9] Dynamic properties of the fractional-order logistic equation of complex variables, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-12 | Zbl
[10] Chaos in the fractional order periodically forced complex Duffing’s oscillators, Chaos Solitons Fractals, Volume 24 (2005), pp. 1097-1104 | DOI | Zbl
[11] Synchronization in a nonidentical fractional order of a proposed modified system, J. Vib. Control, Volume 21 (2015), pp. 1154-1161 | DOI | Zbl
[12] New aspects of the adaptive synchronization and hyperchaos suppression of a financial model, Chaos Solitons Fractals, Volume 99 (2017), pp. 285-296 | DOI | Zbl
[13] A new fractional-order chaotic complex system and its antisynchronization, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-12
[14] Generalized combination complex synchronization for fractional-order chaotic complex systems, Entropy, Volume 17 (2015), pp. 5199-5217
[15] A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 863-879 | DOI | Zbl
[16] Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A, Volume 341 (2004), pp. 55-61 | DOI
[17] Chaos in the fractional order Chen system and its control, Chaos Solitons Fractals, Volume 22 (2004), pp. 549-554 | DOI
[18] Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks , Chaos Solitons Fractals, Volume 92 (2016), pp. 142-149 | DOI | Zbl
[19] Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos, Entropy, Volume 16 (2014), pp. 6195-6211
[20] Fractional-order complex T system: bifurcations, chaos control, and synchronization, Nonlinear Dynam., Volume 75 (2014), pp. 589-602 | Zbl | DOI
[21] Complex modified generalized projective synchronization of fractional-order complex chaos and real chaos, Adv. Difference Equ., Volume 2015 (2015), pp. 1-16 | Zbl | DOI
[22] Asymptotical stability of Riemann–Liouville fractional nonlinear systems, Nonlinear Dynam., Volume 86 (2016), pp. 65-71 | Zbl | DOI
[23] Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays, Appl. Math. Lett., Volume 65 (2017), pp. 32-39 | DOI | Zbl
[24] Robust synchronization of uncertain fractional order chaotic systems, IEICE Trans. Fundamentals, Volume E98-A (2015), pp. 2109-2116 | DOI
[25] Chaos generated from the fractional-order complex Chen system and its application to digital secure communication, Int. J. Modern Phys. C, Volume 2013 (2013), pp. 1-23 | DOI
[26] Chaos in the fractional-order complex Lorenz system and its synchronization, Nonlinear Dynam., Volume 71 (2013), pp. 241-257 | Zbl | DOI
[27] Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, Nonlinear Dynam., Volume 74 (2013), pp. 1169-1181 | Zbl | DOI
[28] Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam., Volume 60 (2010), pp. 479-487 | Zbl | DOI
[29] Controllability of abstract fractional differential evolution equations with nonlocal conditions, J. Math. Computer Sci., Volume 17 (2017), pp. 293-300
[30] Parameter estimation and topology identification of uncertain fractional order complex networks, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 5158-5171 | DOI | Zbl
[31] Real combination synchronization of three fractional-order complex-variable chaotic systems, Optik, Volume 127 (2016), pp. 11460-11468 | DOI
[32] Phase and anti-phase synchronization of fractional-order chaotic systems via active control, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 4079-4088 | DOI | Zbl
[33] Image encryption based on a delayed fractional-order chaotic logistic system, Chin. Phys. B, Volume 21 (2012), pp. 1-6 | DOI
[34] Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay , Comput. Math. Appl., Volume 62 (2011), pp. 1531-1539 | DOI | Zbl
[35] Chaos synchronization of the discrete fractional logistic map, Signal Process., Volume 102 (2014), pp. 96-99 | DOI
[36] Lyapunov functions for Riemann–Liouville-like fractional difference equations, Appl. Math. Comput., Volume 314 (2017), pp. 228-236 | DOI
[37] Chaos synchronization of fractional chaotic maps based on the stability condition, Phys. A, Volume 460 (2016), pp. 374-383 | DOI
[38] Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dynam., Volume 69 (2012), pp. 667-683 | DOI | Zbl
[39] LMI conditions to global Mittag–Leffler stability of fractionalorder neural networks with impulses, Neurocomputing, Volume 193 (2016), pp. 148-154 | DOI
[40] Complex dynamical behavior and modified projective synchronization in fractional-order hyper-chaotic complex Lü system, Chaos Solitons Fractals, Volume 78 (2015), pp. 267-276 | DOI | Zbl
[41] Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Appl. Math. Model., Volume 37 (2013), pp. 2469-2483 | DOI | Zbl
[42] Chaotic synchronization and anti-synchronization based on suitable separation, Phys. Lett. A, Volume 330 (2004), pp. 442-447 | Zbl | DOI
Cité par Sources :