Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5608-5621.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with adaptive control for anti-synchronization of a class of uncertain fractional-order chaotic complex systems described by a unified mathematical expression. By utilizing the recently established result for the Caputo fractional derivative of a quadratic function and employing the adaptive control technique, we design controllers and some fractional-order parameter update laws to anti-synchronize two fractional-order chaotic complex systems with unknown parameters. The proposed method has generality, simplicity, and feasibility. Moreover, anti-synchronization between uncertain fractional-order complex Lorenz system and fractional-order complex Lu system is implemented as an example to demonstrate the effectiveness and feasibility of the proposed scheme.
DOI : 10.22436/jnsa.010.11.02
Classification : 34C28, 34D06
Keywords: Adaptive control, anti-synchronization, fractional-order chaotic complex system, quadratic Lyapunov function

Jiang, Cuimei  1 ; Zhang, Fangfang  2 ; Qin, Haiyong  3 ; Li, Tongxing 4

1 School of Science, Qilu University of Technology, Jinan, Shandong 250353, P. R. China;College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
2 School of Electrical Engineering and Automation, Qilu University of Technology, Jinan, Shandong 250353, P. R. China
3 School of Mathematics, Qilu Normal University, Jinan, Shandong 250013, P. R. China
4 LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong 276005, P. R. China;School of Information Science and Engineering, Linyi University, Linyi, Shandong 276005, P. R. China
@article{JNSA_2017_10_11_a1,
     author = {Jiang, Cuimei  and Zhang, Fangfang  and Qin, Haiyong  and  Li, Tongxing},
     title = {Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5608-5621},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {2017},
     doi = {10.22436/jnsa.010.11.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/}
}
TY  - JOUR
AU  - Jiang, Cuimei 
AU  - Zhang, Fangfang 
AU  - Qin, Haiyong 
AU  -  Li, Tongxing
TI  - Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5608
EP  - 5621
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/
DO  - 10.22436/jnsa.010.11.02
LA  - en
ID  - JNSA_2017_10_11_a1
ER  - 
%0 Journal Article
%A Jiang, Cuimei 
%A Zhang, Fangfang 
%A Qin, Haiyong 
%A  Li, Tongxing
%T Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5608-5621
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/
%R 10.22436/jnsa.010.11.02
%G en
%F JNSA_2017_10_11_a1
Jiang, Cuimei ; Zhang, Fangfang ; Qin, Haiyong ;  Li, Tongxing. Anti-synchronization of fractional-order chaotic complex systems with unknown parameters via adaptive control. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 11, p. 5608-5621. doi : 10.22436/jnsa.010.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.11.02/

[1] Agrawal, S. K.; Das, S. Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2164-2176 | Zbl | DOI

[2] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A. Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2951-2957 | DOI

[3] Baleanu, D.; Wu, G.-C.; Bai, Y.-R.; Chen, F.-L. Stability analysis of Caputo-like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simul., Volume 48 (2017), pp. 520-530 | DOI

[4] Bhalekar, S.; Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 3536-3546 | DOI

[5] M. Caputo Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., Volume 13 (1967), pp. 529-539 | DOI

[6] Chen, L.-P.; Chai, Y.; Wu, R.-C. Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems, Phys. Lett. A, Volume 375 (2011), pp. 2099-2110 | Zbl | DOI

[7] Chen, J.-Y.; Li, C.-D.; Huang, T.-W.; Yang, X.-J. Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control , Modern Phys. Lett. B, Volume 2017 (2017), pp. 1-19 | DOI

[8] Diethelm, K.; Ford, N. J.; A. D. Freed A predictor-corrector approch for the numerical solution of fractional differential equations, Nonlinear Dynam., Volume 29 (2002), pp. 3-22 | DOI

[9] El-Sayed, A. M. A.; Ahmed, E.; El-Saka, H. A. A. Dynamic properties of the fractional-order logistic equation of complex variables, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-12 | Zbl

[10] Gao, X.; J.-B. Yu Chaos in the fractional order periodically forced complex Duffing’s oscillators, Chaos Solitons Fractals, Volume 24 (2005), pp. 1097-1104 | DOI | Zbl

[11] Golmankhaneh, A. K.; Arefi, R.; D. Baleanu Synchronization in a nonidentical fractional order of a proposed modified system, J. Vib. Control, Volume 21 (2015), pp. 1154-1161 | DOI | Zbl

[12] Jajarmi, A.; Hajipour, M.; Baleanu, D. New aspects of the adaptive synchronization and hyperchaos suppression of a financial model, Chaos Solitons Fractals, Volume 99 (2017), pp. 285-296 | DOI | Zbl

[13] Jiang, C.-M.; Liu, S.-T.; Luo, C. A new fractional-order chaotic complex system and its antisynchronization, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-12

[14] Jiang, C.-M.; Liu, S.-T.; Wang, D. Generalized combination complex synchronization for fractional-order chaotic complex systems, Entropy, Volume 17 (2015), pp. 5199-5217

[15] Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 863-879 | DOI | Zbl

[16] Li, C.-G.; Chen, G.-R. Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A, Volume 341 (2004), pp. 55-61 | DOI

[17] Li, C.-G.; Chen, G.-R. Chaos in the fractional order Chen system and its control, Chaos Solitons Fractals, Volume 22 (2004), pp. 549-554 | DOI

[18] Li, H.-L.; Hu, C.; Jiang, Y.-L.; Wang, Z.-L.; Teng, Z.-D. Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks , Chaos Solitons Fractals, Volume 92 (2016), pp. 142-149 | DOI | Zbl

[19] J. Liu Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos, Entropy, Volume 16 (2014), pp. 6195-6211

[20] Liu, X.-J.; Hong, L.; Yang, L.-X. Fractional-order complex T system: bifurcations, chaos control, and synchronization, Nonlinear Dynam., Volume 75 (2014), pp. 589-602 | Zbl | DOI

[21] Liu, J.; Liu, S.-T.; Li, W. Complex modified generalized projective synchronization of fractional-order complex chaos and real chaos, Adv. Difference Equ., Volume 2015 (2015), pp. 1-16 | Zbl | DOI

[22] Liu, S.; Wu, X.; Zhou, X.-F.; W. Jiang Asymptotical stability of Riemann–Liouville fractional nonlinear systems, Nonlinear Dynam., Volume 86 (2016), pp. 65-71 | Zbl | DOI

[23] Liu, S.; Zhou, X.-F.; Li, X.-Y.; Jiang, W. Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays, Appl. Math. Lett., Volume 65 (2017), pp. 32-39 | DOI | Zbl

[24] Luo, J.-H.; Liu, H.; Yang, J.-F. Robust synchronization of uncertain fractional order chaotic systems, IEICE Trans. Fundamentals, Volume E98-A (2015), pp. 2109-2116 | DOI

[25] Luo, C.; X.-Y. Wang Chaos generated from the fractional-order complex Chen system and its application to digital secure communication, Int. J. Modern Phys. C, Volume 2013 (2013), pp. 1-23 | DOI

[26] Luo, C.; Wang, X.-Y. Chaos in the fractional-order complex Lorenz system and its synchronization, Nonlinear Dynam., Volume 71 (2013), pp. 241-257 | Zbl | DOI

[27] Muthukumar, P.; Balasubramaniam, P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, Nonlinear Dynam., Volume 74 (2013), pp. 1169-1181 | Zbl | DOI

[28] Odibat, Z. M. Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam., Volume 60 (2010), pp. 479-487 | Zbl | DOI

[29] Qin, H.-Y.; Zhang, C.-H.; Li, T.-X.; Chen, Y. Controllability of abstract fractional differential evolution equations with nonlocal conditions, J. Math. Computer Sci., Volume 17 (2017), pp. 293-300

[30] Si, G.-Q.; Sun, Z.-Y.; Zhang, H.-Y.; Zhang, Y.-B. Parameter estimation and topology identification of uncertain fractional order complex networks, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 5158-5171 | DOI | Zbl

[31] Sun, J.-W.; Deng, W.; Cui, G.-Z.; Song, Y.-F. Real combination synchronization of three fractional-order complex-variable chaotic systems, Optik, Volume 127 (2016), pp. 11460-11468 | DOI

[32] Targhvafard, H.; G. H. Enjace Phase and anti-phase synchronization of fractional-order chaotic systems via active control, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 4079-4088 | DOI | Zbl

[33] Wang, Z.; Huang, X.; Li, N.; Song, X.-N. Image encryption based on a delayed fractional-order chaotic logistic system, Chin. Phys. B, Volume 21 (2012), pp. 1-6 | DOI

[34] Wang, Z.; Huang, X.; G.-D. Shi Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay , Comput. Math. Appl., Volume 62 (2011), pp. 1531-1539 | DOI | Zbl

[35] Wu, G.-C.; Baleanu, D. Chaos synchronization of the discrete fractional logistic map, Signal Process., Volume 102 (2014), pp. 96-99 | DOI

[36] Wu, G.-C.; Baleanu, D.; Luo, W.-H. Lyapunov functions for Riemann–Liouville-like fractional difference equations, Appl. Math. Comput., Volume 314 (2017), pp. 228-236 | DOI

[37] Wu, G.-C.; Baleanu, D.; Xie, H.-P.; Chen, F.-L. Chaos synchronization of fractional chaotic maps based on the stability condition, Phys. A, Volume 460 (2016), pp. 374-383 | DOI

[38] Wu, X.-J.; Lai, D.-R.; Lu, H.-T. Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dynam., Volume 69 (2012), pp. 667-683 | DOI | Zbl

[39] Wu, H.-Q.; Zhang, X.-X.; Xue, S.-H.; Wang, L.-F.; Wang, Y. LMI conditions to global Mittag–Leffler stability of fractionalorder neural networks with impulses, Neurocomputing, Volume 193 (2016), pp. 148-154 | DOI

[40] Yang, L.-X.; Jiang, J. Complex dynamical behavior and modified projective synchronization in fractional-order hyper-chaotic complex Lü system, Chaos Solitons Fractals, Volume 78 (2015), pp. 267-276 | DOI | Zbl

[41] Yin, C.; Dadras, S.; Zhong, S.-M.; Chen, Y.-Q. Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Appl. Math. Model., Volume 37 (2013), pp. 2469-2483 | DOI | Zbl

[42] Zhang, Y.-P.; Sun, J.-T. Chaotic synchronization and anti-synchronization based on suitable separation, Phys. Lett. A, Volume 330 (2004), pp. 442-447 | Zbl | DOI

Cité par Sources :