Common fixed points of generalized rational contractions on a closed ball in partial metric spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5261-5270.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The notion of generalized contractions of rational type on a closed ball is introduced and used to establish some common fixed point theorems for two, three and four mappings in complete ordered partial metric spaces. These results improve several well-known, primary and conventional results. We give an example to illustrate the main idea of our results that there are mappings which have only fixed points inside or on the closed ball instead of whole space.
DOI : 10.22436/jnsa.010.10.12
Classification : 47H09, 47H10, 54H25
Keywords: Common fixed point, closed ball, generalized contraction, partial metric space

Nazam, Muhammad  1 ; Arshad, Muhammad  2 ; Park, Choonkil  3 ; Yun, Sungsik  4

1 Department of Mathematics, International Islamic University, Islamabad, Pakistan
2 Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan
3 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
4 Department of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, Republic of Korea
@article{JNSA_2017_10_10_a11,
     author = {Nazam, Muhammad  and Arshad, Muhammad  and Park, Choonkil  and Yun, Sungsik },
     title = {Common fixed points of generalized rational contractions on a closed ball in partial metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5261-5270},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/}
}
TY  - JOUR
AU  - Nazam, Muhammad 
AU  - Arshad, Muhammad 
AU  - Park, Choonkil 
AU  - Yun, Sungsik 
TI  - Common fixed points of generalized rational contractions on a closed ball in partial metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5261
EP  - 5270
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/
DO  - 10.22436/jnsa.010.10.12
LA  - en
ID  - JNSA_2017_10_10_a11
ER  - 
%0 Journal Article
%A Nazam, Muhammad 
%A Arshad, Muhammad 
%A Park, Choonkil 
%A Yun, Sungsik 
%T Common fixed points of generalized rational contractions on a closed ball in partial metric spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5261-5270
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/
%R 10.22436/jnsa.010.10.12
%G en
%F JNSA_2017_10_10_a11
Nazam, Muhammad ; Arshad, Muhammad ; Park, Choonkil ; Yun, Sungsik . Common fixed points of generalized rational contractions on a closed ball in partial metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5261-5270. doi : 10.22436/jnsa.010.10.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/

[1] Abdeljawad, T. Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems , Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | DOI | Zbl

[2] Abdeljawad, T.; Karapınar, E.; K. Taş Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904 | DOI

[3] Almeida, A .; Roldán-López-de-Hierro, A. F.; K. Sadarangani On a fixed point theorem and its application in dynamic programming, Appl. Anal. Discrete Math., Volume 9 (2015), pp. 221-244 | DOI | Zbl

[4] Altun, I.; Erduran, A. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | DOI

[5] Altun, I.; Romaguera, S. Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math., Volume 6 (2012), pp. 247-256 | Zbl | DOI

[6] Altun, I.; Sola, F.; Simsek, H. Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785

[7] Arshad, M.; Azam, A.; Vetro, P. Some common fixed point results in cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-11 | DOI

[8] Bukatin, M.; Kopperman, R.; Matthews, S.; Pajoohesh, H. Partial metric spaces , Amer. Math. Monthly, Volume 116 (2009), pp. 708-718

[9] Bukatin, M. A.; Shorina, S. Y. Partial metrics and co-continuous valuations, Foundations of software science and computation structures, Lisbon, (1998), Lecture Notes in Comput. Sci., Springer, Berlin, Volume 1378 (1998), pp. 125-139 | DOI | Zbl

[10] Dass, B. K.; Gupta, S. An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458

[11] Erhan, ´I. M.; Karapinar, E.; Türkoğlu, D. Different types Meir-Keeler contractions on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 1000-1005 | Zbl

[12] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393 | DOI

[13] Haghi, R. H.; Rezapour, S.; N. Shahzad Some fixed point generalizations are not real generalizations, Nonlinear Anal., Volume 74 (2011), pp. 1799-1803 | DOI

[14] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76

[15] Leibovic, K. N. The principle of contraction mapping in nonlinear and adaptive control systems, IEEE Trans. Automatic Control, Volume 9 (1964), pp. 393-398 | DOI

[16] Matthews, S. G. Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, Volume 728 (1994), pp. 183-197 | DOI

[17] Nashine, H. K.; E. Karapinar Fixed point results in orbitally complete partial metric spaces, Bull. Malays. Math. Sci. Soc., Volume 36 (2013), pp. 1185-1193

Cité par Sources :