Voir la notice de l'article provenant de la source International Scientific Research Publications
Nazam, Muhammad  1 ; Arshad, Muhammad  2 ; Park, Choonkil  3 ; Yun, Sungsik  4
@article{JNSA_2017_10_10_a11, author = {Nazam, Muhammad and Arshad, Muhammad and Park, Choonkil and Yun, Sungsik }, title = {Common fixed points of generalized rational contractions on a closed ball in partial metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5261-5270}, publisher = {mathdoc}, volume = {10}, number = {10}, year = {2017}, doi = {10.22436/jnsa.010.10.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/} }
TY - JOUR AU - Nazam, Muhammad AU - Arshad, Muhammad AU - Park, Choonkil AU - Yun, Sungsik TI - Common fixed points of generalized rational contractions on a closed ball in partial metric spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5261 EP - 5270 VL - 10 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/ DO - 10.22436/jnsa.010.10.12 LA - en ID - JNSA_2017_10_10_a11 ER -
%0 Journal Article %A Nazam, Muhammad %A Arshad, Muhammad %A Park, Choonkil %A Yun, Sungsik %T Common fixed points of generalized rational contractions on a closed ball in partial metric spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 5261-5270 %V 10 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/ %R 10.22436/jnsa.010.10.12 %G en %F JNSA_2017_10_10_a11
Nazam, Muhammad ; Arshad, Muhammad ; Park, Choonkil ; Yun, Sungsik . Common fixed points of generalized rational contractions on a closed ball in partial metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5261-5270. doi : 10.22436/jnsa.010.10.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.12/
[1] Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems , Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | DOI | Zbl
[2] Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904 | DOI
[3] On a fixed point theorem and its application in dynamic programming, Appl. Anal. Discrete Math., Volume 9 (2015), pp. 221-244 | DOI | Zbl
[4] Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | DOI
[5] Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math., Volume 6 (2012), pp. 247-256 | Zbl | DOI
[6] Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785
[7] Some common fixed point results in cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-11 | DOI
[8] Partial metric spaces , Amer. Math. Monthly, Volume 116 (2009), pp. 708-718
[9] Partial metrics and co-continuous valuations, Foundations of software science and computation structures, Lisbon, (1998), Lecture Notes in Comput. Sci., Springer, Berlin, Volume 1378 (1998), pp. 125-139 | DOI | Zbl
[10] An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458
[11] Different types Meir-Keeler contractions on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 1000-1005 | Zbl
[12] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393 | DOI
[13] Some fixed point generalizations are not real generalizations, Nonlinear Anal., Volume 74 (2011), pp. 1799-1803 | DOI
[14] Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76
[15] The principle of contraction mapping in nonlinear and adaptive control systems, IEEE Trans. Automatic Control, Volume 9 (1964), pp. 393-398 | DOI
[16] Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, Volume 728 (1994), pp. 183-197 | DOI
[17] Fixed point results in orbitally complete partial metric spaces, Bull. Malays. Math. Sci. Soc., Volume 36 (2013), pp. 1185-1193
Cité par Sources :