Sensitivity of non-autonomous discrete dynamical systems revisited
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5239-5244.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this note, we construct a transitive non-autonomous discrete system with strongly periodic density which is not sensitive. Besides, we prove that every transitive non-autonomous discrete system with almost periodic density is syndetically sensitive, provided that it converges uniformly to a map, and that a product system is multi-sensitive (resp., $\mathcal{F}$-sensitive) if and only if there exists a factor system is multi-sensitive (resp., $\mathcal{F}$-sensitive), where $\mathcal{F}$ is a filterdual.
DOI : 10.22436/jnsa.010.10.10
Classification : 37B55, 54H20
Keywords: \(\mathcal{F}\)-sensitivity, Non-autonomous discrete system \(({\bf NADS})\), sensitivity, transitivity, product system

Ding, Xian-Feng  1 ; Lu, Tian-Xiu  2 ; Wang, Jian-Jun  3

1 School of Sciences, Southwest Petroleum University, Chengdu, Sichuan, 610500, People’s Republic of China
2 School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, People’s Republic of China
3 Department of Applied Mathematics, Sichuan Agricultural University, Ya’an, Sichuan, 625014, People’s Republic of China
@article{JNSA_2017_10_10_a9,
     author = {Ding, Xian-Feng  and Lu, Tian-Xiu  and Wang, Jian-Jun },
     title = {Sensitivity of non-autonomous discrete dynamical systems revisited},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5239-5244},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.10/}
}
TY  - JOUR
AU  - Ding, Xian-Feng 
AU  - Lu, Tian-Xiu 
AU  - Wang, Jian-Jun 
TI  - Sensitivity of non-autonomous discrete dynamical systems revisited
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5239
EP  - 5244
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.10/
DO  - 10.22436/jnsa.010.10.10
LA  - en
ID  - JNSA_2017_10_10_a9
ER  - 
%0 Journal Article
%A Ding, Xian-Feng 
%A Lu, Tian-Xiu 
%A Wang, Jian-Jun 
%T Sensitivity of non-autonomous discrete dynamical systems revisited
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5239-5244
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.10/
%R 10.22436/jnsa.010.10.10
%G en
%F JNSA_2017_10_10_a9
Ding, Xian-Feng ; Lu, Tian-Xiu ; Wang, Jian-Jun . Sensitivity of non-autonomous discrete dynamical systems revisited. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5239-5244. doi : 10.22436/jnsa.010.10.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.10/

[1] E. Akin Recurrence in topological dynamics, Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997 | DOI

[2] Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; P. Stacey On Devaney’s definition of chaos, Amer. Math. Monthly, Volume 99 (1992), pp. 332-334 | DOI

[3] Elaydi, S. N. Nonautonomous difference equations: open problems and conjectures, Differences and differential equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, Volume 42 (2004), pp. 423-428 | Zbl

[4] Elaydi, S.; Sacker, R. J. Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Equ. Appl., Volume 11 (2005), pp. 337-346 | DOI | Zbl

[5] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981

[6] Kolyada, S.; Misiurewicz, M.; Snoha, L. Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval , Fund. Math., Volume 160 (1999), pp. 161-181 | EuDML | Zbl

[7] Kolyada, S.; L. Snoha Topological entropy of nonautonomous dynamical systems , Random Comput. Dynam., Volume 4 (1996), pp. 205-233

[8] Lan, Y.-Y. Chaos in nonautonomous discrete fuzzy dynamical systems, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 404-412 | DOI | Zbl

[9] Li, J.; Oprocha, P.; Wu, X.-X. Furstenberg families, sensitivity and the space of probability measures, Nonlinearity, Volume 30 (2017), pp. 987-1005 | Zbl | DOI

[10] Moothathu, T. K. S. Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126 | DOI

[11] Wang, Y.-G.; Wei, G.; Campbell, W. H. Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems , Topology Appl., Volume 156 (2009), pp. 803-811 | Zbl | DOI

[12] Wu, X.-X. Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-12 | Zbl | DOI

[13] X.-X. Wu A remark on topological sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 27 (2017), pp. 1-7 | DOI | Zbl

[14] Wu, X.-X.; Chen, G.-R. Sensitivity and transitivity of fuzzified dynamical systems, Inform. Sci., Volume 396 (2017), pp. 14-23 | DOI

[15] Wu, X.-X.; Oprocha, P.; Chen, G.-R. On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972 | DOI | Zbl

[16] Wu, X.-X.; Wang, X. On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-6 | DOI | Zbl

[17] Wu, X.-X.; Wang, X. Topological dynamics of Zadeh’s extension on the space of upper semi-continuous fuzzy sets, ArXiv, Volume 2016 (2016), pp. 1-14 | DOI

[18] Wu, X.-X.; Wang, J.-J.; Chen, G.-R. F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26 | DOI | Zbl

[19] Wu, X.-X.; Wang, X.; Chen, G.-R. On the large deviations theorem of weaker types, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 27 (2017), pp. 1-12 | Zbl | DOI

[20] Wu, X.-X.; Wang, L.-D.; Chen, G.-R. Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal., Volume 8 (2017), pp. 199-210 | Zbl | DOI

[21] Wu, X.-X.; Zhu, P.-Y. Chaos in a class of non-autonomous discrete systems, Appl. Math. Lett., Volume 26 (2013), pp. 431-436 | DOI | Zbl

[22] Ye, X.-D.; Zhang, R.-F. On sensitive sets in topological dynamics, Nonlinearity, Volume 21 (2008), pp. 1601-1620 | DOI

Cité par Sources :